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1 Introduction

Randomness is an indispensable tool in computer algebra. Even for the basic and
apparentlysimple task of factoring univariate polynomials over finite fields the only
known efficient (= polynomial-time) algorithms are probabilistic, and finding a
deterministic solution is the central theoretical problem in that area. For many, but
not all, tasks of computational linear algebra the most efficient algorithms today
use pre- and post-multiplication byrandommatrices, as introduced in Borodin et al.
(1982) and refined in manyways since then; it is now a staple tool in that field.

Even greater is the importance in cryptography, sayfor generating all kinds of
secret keys. Deterministic or predictable keyswould allow an adversaryto reproduce
them and break the cryptosystem. Since the random keys are onlyknown to the
legitimate user, a brute-force attack would require an exhaustive search of a key
space that is prohibitivelylarge, thus preventing a feasible or practical search.

Now a fundamental problem is that we treat our computers as deterministic
entities that, bytheir nature, cannot generate randomness. This is not literallytrue
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because tinyrandom influences maycome from effects like cosmic radiation, but
these are easily controlled by error-correcting measures. Furthermore, quantum
computers provide randomness naturally. Even more, they can factor integers in
polynomial time and break most of the classical cryptosystems, sayRSA, due to
the famous algorithm by Shor (1999). But it is a matter of opinion whether or
when scalable quantum computing will become a reality. Some central problems are
described in Dyakonov (2018) and Clarke (2019), with a professionallyoptimistic
view in the latter article.

How can we deal with this basic impossibility to generate randomness on our
computers? After all, we do want secure internet connections and much more. A
common solution works in two steps:

1. Produce values that are supposed to carrya reasonable amount of randomness,
using an outside source, saymeasuring some physical process that looks chaotic
to us.

2. Extend a small amount of true randomness to an arbitrarily large amount of
pseudorandomness.

And what does that mean? True randomness refers to uniform randomness. A
uniformlyrandom source with values in a finite set produces each element of the set
with the same probability. A pseudorandom source, usuallycalled a pseudorandom
generator, produces values that cannot be distinguished efficientlyfrom uniformly
random ones. That is, no efficient (polynomial-time) machine, deterministic or
probabilistic, exists which can ask for an arbitrarilylong stream of values, is given
either a uniformly random stream or a stream generated by the pseudorandom
generator, and then decides (with non-negligible probabilityof correctness) which
of the two is the case.

Given a generator claimed to be pseudorandom, how do you prove that no such
distinguishing machine exists? Unfortunately, we cannot, and there is no proof of
any“provable security” in sight. The difficultyis embodied in the question P ̸=
NP posed byCook (1971) and, almost half a century later, is still an open one-
million-dollarmillennium problem. But computational complexityoffers a solution:
reductions. We take some algorithmic problem which is considered to be hard (not
solvable in (random) polynomial time) and show that the existence of an efficient
distinguisher implies a solution to the problem. A well-known such problem is the
factorization of large integers. Manyresearchers have looked at it and no solution is
known (except on the as yet hypothetical quantum computers). Such a reduction is
currentlythe best wayof establishing pseudorandomness.

Probabilitytheorysuggest a different approach: measure the entropy. It expresses
the “amount” of randomness that a source produces. Unfortunately, entropycannot
be measured practically(Goldreich et al. 1999; von zur Gathen and Loebenberger
2018). As a way out, sometimes the block entropy is measured, see below. It
will show large statistical abnormalities, if present, within the output stream, but
cannot indicate their absence. In our context, this is rather useless, since even
cryptographicallyweak generators maypossess high block entropy.

An intermediate step before seeding a pseudorandom generator from a source is
randomness extraction. Some of the methods in that area onlyrequire a lower bound
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on the source’s min-entropy, a more intuitive measure for randomness. By their
nature, physical random generators are not amenable to mathematically rigorous
proofs of such bounds. Quite justifiably, reasonable engineering standards ignore
such theoretical stipulations in practice, but we give some weight to them.

For physical hardware generators, applying a series of statistical tests like the
above seems to be the onlyapproach, and we also use it for lack of alternatives. For
instance, lack of sufficient entropycaused severe weakening of Debian’s OpenSSL
implementation, see Schneier (2008). However, experts know the dangers of this
approach quite well:

The main part of a securityevaluation considers the generic design and its implementation.
The central goal is to quantify (at least a lower bound for) the entropy per random bit.
Unfortunately, entropycannot be measured as voltage or temperature. Instead, entropyis
a propertyof random variables and not of observed realizations (here: random numbers).
(Killmann and Schindler 2008)

This warning is often ignored in the literature.
Pseudorandom generators come in two flavors: based on a symmetric cryptosys-

tem like the Advanced Encryption Standard (AES), or based on number-theoretic
hard problems such as factoring integers. The general wisdom is that the latter are
much slower than the former. The main goal of this paper is to examine this opinion
which, to our surprise, turns out to be untenable.

We studyone hardware generator; byits nature, it is out of scope for theoretical
comparisons. Among the software pseudorandom generators, AES and some of the
number-theoretic ones perform roughlyequallywell, provided theyare run with fair
implementations. We use corresponding home-brew code to run them, implemented
with the same care. However, if the AES generator is run on specialized AES-
friendly hardware, it outperforms the others bya large distance. This comes as no
surprise.

Our comparative analysis covers some popular pseudorandom generators and
two physical sources of randomness. Of course, the choice of possible generators is
vast. We thus tryto select examples of the respective classes to get a representative
picture of the whole situation. Our measurements were reported in Burlakov et al.
(2015a), so that their absolute values are somewhat outdated. But that is not the point
here: we strive for a fair comparison of the generators, and that can be expected to
carrythrough to later hardware versions, with a grain of salt.

An example of the insatiable thirst for randomness are TLS transactions, which
consume at 43.000 new transactions per second (cipher suite ECDHE-ECDSA-
AES256-GCM-SHA384) on a single Intel Xeon based system (cf. NGINX 2016
product information) 1376KB/s of randomness to generate pre-master secrets of
256 bits each—ideally, using onlynegligible CPU resources.

In our setup we use as a source of random seeds one particular output of the
hardware generator PRG310-4, which was analyzed in Schindler and Killmann
(2003). On the software side we discuss several number-theoretic generators,
namely the linear congruential generator, the RSA generator, and the Blum–
Blum–Shub generator, all at carefullyselected truncation rates of the output. The
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generators come with certain security reductions. For comparison we add to our
analysis pseudorandom generators based on a well-studied block cipher, in our case
AES in counter mode.

The article is structured as follows: We first present previous work on generator
analysis in Sect. 2 before giving a detailed overview of the generators in Sect. 3. The
main contribution is the evaluation regarding throughput and entropyconsumption
in Sect. 4. We conclude and elaborate on future work in Sect. 5.

All algorithms except the one employing AES-NI were implemented in a
textbook manner using non-optimized C-code, thus providing a fair comparison.
The source code of the algorithms is available at Burlakov et al. (2015b).

2 Related Work

Concerning physical generators, Killmann and Schindler (2008) analyze noisy
diodes as a random source, providing a model for its entropy. One example of
a noisydiodes based generator is the commercial generator PRG310-4, which is
distributed byBergmann (2019). Concerning non-physical true random generators,
Linux’ VirtIO generator as used in /dev/random is illustrated byGutterman
et al. (2006) and explained byLacharme et al. (2012). Combined, they provide
a clear picture of its inner workings. Additionally, there is the study byMüller
(2019) in which the qualityof /dev/random and /dev/urandom is studied
with respect to the functionalityclasses for random generators as given byKillmann
and Schindler (2011).

Referring to pseudorandom generators, the RSA based generator is explained
in Shamir (1983), Fischlin and Schnorr (2000), and Steinfeld et al. (2006). Its
cryptographic security is shown in Alexi et al. (1988) and extended in Steinfeld
et al. (2006). Linear congruential generators were first proposed byLehmer (1951).
Attacks were discussed in Plumstead (1982) and Håstad and Shamir (1985). They
all exploited its simple linear structure and come with a specific parameterization.
Not all parameterizations—such as truncating its output to a single bit—have been
attacked successfully as of today. Contini and Shparlinski (2005) analyze this in
depth concluding that (for some cases)

[. . . ] we do not know if the truncated linear congruential generator can still be cryptana-
lyzed.

Blum et al. (1986) introduced the Blum–Blum–Shub generator. Alexi et al.
(1988) and Fischlin and Schnorr (2000) show that the integer modulus can be
factored, given a distinguisher for the generator.

A totally different approach for the construction of pseudorandom generators
are the ones based on established cryptographic primitives. NIST (2015) specifies
several standards for producing cryptographicallysecure random numbers. Besides
hash-based techniques, there is also a standard employing a block cipher in counter
mode, see also NIST (2001b) for this purpose.
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RFC 4086, see Eastlake et al. (2005), compares different techniques and provides
a de-facto standard focussing on internet engineering. There, several entropy
pool techniques and randomness generation procedures are specified. However,
RFC 4086 lacks recommendations for the ciphers to be used in OFB (output
feedback) and CTR (counter mode) generation. We show here that such a general
recommendation would also be ill-suited since the optimal choice depends heavily
on the platform used.

We are not aware of anycomprehensive fair benchmarking surveyfor all the
generators mentioned above that integrates them into the Linux operating system.

3 The Generators

In the following, each generator which was implemented or applied for the
comparative analysis is brieflypresented. The output of a pseudorandom generator
is, bydefinition, not efficientlydistinguishable from uniform randomness, see for
example Goldreich (2001). When assuming that certain problems in algorithmic
number theory(such as factoring integers) are difficult to solve, the Blum–Blum–
Shub, and RSA generators with suitable truncation have this property, but the
linear congruential generator does not. Also the AES-based generator does not, but
assuming AES to be a secure cipher, the AES-based generator is pseudorandom as
well.

3.1 Linux /dev/random and /dev/urandom

The German Federal Office for Information Security1 sets cryptographic standards
in Germanyand judges /dev/random to be a non-physical true random number
generator (i.e., an NTG.1 generator in the terminologyof Killmann and Schindler
2011) for most Linux kernel versions, see BSI (2019b).

/dev/urandom, however, does not fulfill the requirements for the class
NTG.1, since propertyNTG.1.1 requires:

The RNG shall test the external input data provided by a non-physical entropy source
in order to estimate the entropy and to detect non-tolerable statistical defects [. . . ], see
Killmann and Schindler (2011).

Additionally, /dev/urandom violates NTG 1.6 which states

The average Shannon entropyper internal random bit exceeds 0.997.

Both are clearlynot met by/dev/urandom due to the fact that the device is
non-blocking.

1Bundesamt für Sicherheit in der Informationstechnik (BSI).
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However, /dev/urandom fulfills all other requirements of the class NTG.1,
i.e. the conditions NTG 1.2 up to NTG 1.5. In particular, it is a DRG.3 generator if
it is properlyseeded.

As already mentioned, system events are used to gather entropy on Linux
Systems. These events are post-processed and made available to the devices
/dev/random and /dev/urandom. This includes estimating the entropyof the
event and mixing.

However, /dev/urandomwill still supplythe user with “randomness” without
checking whether the entropy-pool is still sufficiently filled. In fact, the user is
instead supplied with pseudorandom data in favor of speed requirements.

In the OpenBSD operating system, none of the random devices is implemented
in a blocking mode. The idea is that much potentiallybad randomness is still better
than the parsimonious use of high-qualityrandomness. This is in contrast to the
opinion, as for example held bythe BSI, that one should require all used randomness
to be of guaranteed good quality. As of now, there is still no consensus on this issue.

Since the /dev/urandom device has undergone a major change introduced by
Ts’o (2016) in kernel version 4.8, two kernel versions were benchmarked to test
the differences. Namelythe original Ubuntu 16.04 kernel 4.4.0 and the more recent
version 4.10.0.

3.2 PRG310-4

The PRG310-4 gathers entropyfrom a system of two noisydiodes, see Bergmann
(2019), and is connected to a computer via USB. Similar variants exist for different
interface types. According to Bergmann (2019), its behavior follows the stochastic
model in Killmann and Schindler (2008), who argue that

[. . . ] the true conditional entropies should be indeed veryclose to 1 [. . . ], which gives an
output of slightlymore than 500 kBit internal random numbers per second.

Bergmann (2019) mentions that this device satisfies all requirements for class
PTG.3, which are “hybrid physical random number generator with cryptographic
post-processing” in the terminologyof Killmann and Schindler (2011).

3.3 AES in Counter Mode

Due to the fact that since 2008 there is AES-NI,2 realizing dedicated processor
instructions on Intel and AMD processors for the block cipher AES as standardized
byNIST (2001a), we add to our comparison the AES counter mode generator. This

2For a white paper of AES-NI, see Gueron (2010).
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generator is also standardized byNIST (2015) and produces a sequence of 128
bit blocks. We aim at security level of 128 bits, thus employing AES-128 as the
underlying block cipher.

The security of the AES generator directly reduces to the security of AES.
Indeed, anydistinguisher for the pseudorandom generator gives an equallygood
distinguisher for AES in counter mode. Assuming the latter to be secure, one
concludes that also the pseudorandom generator is secure.

However, in contrast to the number-theoretic generators described below, we do
not have anyreductionist argument in our hands to actuallyprove that the generator
is secure if some presumablyhard mathematical problem is intractable. We need to
trust that the cipher AES is secure—and the dedicated processor instructions on our
CPU work as specified.

When one looks carefullyat the definition of a DRG.3 generator in the sense of
Killmann and Schindler (2011), AES in counter mode is not DRG.3. Specifically,
it violates the condition DRG.3.3 of backward secrecy, since the NIST document
allows in a single request multiple outputs before the transition function is applied,
while the BSI requires that the state transition function of the generator is applied
after each new random number.

3.4 Linear Congruential Generators

The linear congruential generator as presented in Lehmer (1951) produces for i ≥ 1
a sequence of values in xi ∈ ZM , generated byapplying for a,b∈ ZM iteratively

xi = a · xi−1 + bin ZM

to a secret random seed x0 ∈ ZM provided byan external source. The parameters a,
b, andM are also kept secret and chosen from the external source.

While the bytes of linear congruential generator outputs are generally well-
distributed, with byte entropy close to maximal, the generated sequences are
predictable and therefore cryptographicallyinsecure.

Plumstead (1982) describes how to recover the secrets a, b and M from the
sequence of (xi)i≥0 alone. A possible mitigation against this attack is to output only
some least significant bits of the xi . Håstad and Shamir (1985) describe a lattice
based attack on such truncated linear congruential generator where all parameters
are public. Stern (1987) shows that also in the case when the parameters are kept
secret. This attack can be used to predict linear congruential generators that output
at least 1

3 of the bits of the xi . Contini and Shparlinski (2005) write that there is
no cryptanalytic attack known when onlyapproximatelyk = log2 log2M bits are
output per round.

We are neither aware of a more powerful attack on the linear congruential gen-
erator nor of a more up-to-date securityargument for truncated linear congruential
generators.
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In our evaluation we used a prime modulus M with 2048 bits. Per round we
output k = 11 bits, which coincides with the value from Contini and Shparlinski
(2005) mentioned above. For comparison, we also run the generator with modulus
M = 22048 and full output, that is, no truncation, which is basically the fastest
number-theoretic generator we can hope for.

The full linear congruential generator is not a pseudorandom generator in the
terminologyof Killmann and Schindler (2011), since it does not provide forward
secrecy. If the sketched truncated version of the linear congruential generator can
indeed not be cryptanalyzed then it belongs to the class DRG.3.

3.5 The Blum–Blum–Shub Generator

The Blum–Blum–Shub generator was introduced in 1982 to the cryptographic
communityand later published in Blum et al. (1986). The generator produces a
pseudorandom bit sequence from a random seed byrepeatedlysquaring modulo a
so called Blum integer N = p · q, where p and q are distinct large random primes
congruent to 3 mod 4. In its basic variant, in each round the least significant bit
of the intermediate result is returned. Vazirani and Vazirani (1984) proved that the
Blum–Blum–Shub generator is secure if k = log2 log2N least significant bits are
output per round.

Alexi et al. (1988) proved that factoring the Blum integer N can be reduced to
being able to guess the least significant bit of anyintermediate square with non-
negligible advantage. The output of this generator is thus cryptographicallysecure
under the assumption that factoring Blum integers is a hard problem.

In our evaluation p and q are randomlyselected 1024 bit primes with p = q= 3
mod 4, which corresponds—as above—to the securitylevel of 128 bits following
again the BSI (2019a) guideline TR-02102-1.

If factoring Blum integers is hard then the Blum–Blum–Shub generator—
properly seeded—is a DRG.3 generator in the terminology of Killmann and
Schindler (2011).

3.6 The RSA Generator

The RSA generator was first presented by Shamir (1983) and is one of the
pseudorandom generators that are proven to be cryptographically secure under
certain number-theoretical assumptions. Analogouslyto the RSA cryptosystem, the
generator is initialized bychoosing a modulusN as the product of two large random
primes, and an exponent e with 1 < e < ϕ(N) − 1 and gcd(e,ϕ(N)) = 1. Here,
ϕ denotes Euler’s totient function. Starting from a seed x0 provided byan external
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source, the generator iterativelycomputes

xi+1 = xei mod N,

extracts the least significant k bits of each intermediate result xi and concatenates
them as output.

Our implementation uses a random 2048-bit Blum integer (see Sect. 3.5) as
modulusN and various choices for the parameters e and k.

In Alexi et al. (1988) it is shown that the RSA generator is pseudorandom for
k = log2 log2N = 11, under the assumption that the RSA inversion problem
is hard. For our tests, we choose e = 3, as for small exponents the generator is
expected to work fast and because it allows us to compare the results to the runtime
of the Blum–Blum–Shub generator.

Under a stronger assumption called the SSRSA assumption, Steinfeld et al.
(2006) prove the security of the generator for k ≤ n · ( 12 − 1

e − ε − o(1)) for
anyε > 0, giving for e = 3 the parameter value k = 238. Additionally, we test the
larger exponent e = 216 + 1, which is widelyused in practice, for it is a prime and
its structure allows efficient exponentiation, with k = 921.

If the RSA inversion problem is hard then the RSA generator—properly
seeded—is a DRG.3 generator in the terminology of Killmann and Schindler
(2011).

4 Evaluation

To evaluate the efficiencyof the generators considered, we developed a framework
that runs the software generators based on seed data from the PRG310-4. To this end,
we implemented the generators in C, using the GMP library, see Granlund (2014),
to accomplish large integer arithmetic. The evaluation framework sequentiallyruns
all generators, reading from one true random source file of 512 kB and producing
512 kB each, while measuring the runtime of each generator and the byte entropyof
each output.

All algorithms were run on an Acer V Nitro notebook with a Intel Core i5-4210U
CPU at 1.70GHz with 8GBRAM.We used Ubuntu 16.04 64-bit with kernel version
4.10.0-32, as well version 4.4.0-92 as reference for the kernel random devices.

This process was repeated 750 times specifically, so that the average runtime of
the generators should not deviate considerablyfrom its expectation.

To see this, let A be a randomized algorithm. Then the runtime t (A) is a random
variable. Without loss of generalitylet the runtime be bounded in the interval I =
[0..1]. We write t = Et (A) for the expected runtime of A. Consider running the
randomized algorithm k times. Then the average runtime of this experiment is

Xk =
1
k
· (t (A)1 + . . .+ t (A)k).
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For its expectation we have

EXk = Et (A) = t ∈ I.

Thus, the expectation of the average runtime of k runs is equal to the expectation of
a single run. If we observe after k runs an average runtime of Xk , then we can ask:

How large should k be so that the probabilitythat the observed valueXk significantlydiffers
from its expectation EXk is verysmall?

ByHoeffding’s inequalitywe have

prob(|Xk − EXk| ≥ δ) ≤ ϵ

for a real number δ ∈ R>0 and ϵ = 2 exp(− 2kδ2). To be statisticallysignificant, we
set ϵ = δ = 0.05, as typicallydone in statistics. Then we require that prob(|Xk −
t| ≥ 0.05) ≤ 0.05 = 2 exp(− 2k · 0.052), i.e., k > 737.

Thus we need at least 737 runs of the algorithm so that the probabilitythat the
observed result deviates statisticallysignificant from the actual expected runtime is
smaller than 1/20. Thus, 750 runs will do the job.

In order to reduce the impact of other operating system components during our
benchmarking, we decided to split up the initialization and generation processes
and measure the time for the generation onlyafter a certain amount of data was
generated. This way, the throughput of the generators had time to stabilize and
we thus omit possible noise that is produced when the generator is started up. To
determine the appropriate amount of data to be generated before the measurement,
we measured throughput for increasing amounts of data so that we could see at
which point the throughput stabilizes.

Figure 1 shows the pseudorandom software generators along with the two
versions of /dev/urandom as reference points. In the logarithmic scale on
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the throughput axis, an AES implementation on AES-friendly hardware has a
throughput of about 2.5GB/s of pseudorandom data, while the RSA generator
with 921 bit truncation and 65,537 as public exponent, i.e., the fastest number-
theoretic generator assumed to be secure, provides about 2.7MB/s of pseudorandom
data. This makes the latter about 1000 times slower than the AES generator.
The linear congruential generator can compete with the fast AES implementation,
when not truncating the output, generating about 922MB/s, but as explained in
Sect. 3.4 without truncation the generator is not cryptographicallysecure. As a fairer
comparison to the textbook implementations of the number theoretic generators, the
textbook version of AES still generates 32.7MB/s, beating the RSA implementation
bya factor of ten.

A second benchmark was performed for the different physical generators consid-
ered, depicted in Fig. 2. Again a logarithmic scale is employed to allow having the
/dev/urandom devices with up to 166.8MB/s of output and the /dev/random
device with 2.2B/s of output in the same picture. The most surprising observation is
the jump in performance regarding the /dev/urandom device introduced bythe
re-implementation described in Sect. 3.1. When onlyconsidering blocking physical
devices, i.e., taking out /dev/urandom completely, the Bergmann generator
outperforms the/dev/random device easilyboth with (13 kB/s) and without post-
processing (29 kB/s).

The amount of randomness needed for seeding the software generators differs
considerably. The least amount is needed by the AES based generators, which
need 128 bits for the textbook and 256 bits for the OpenSSL implementation.
The latter randomizes initial counter and key, whereas the former onlyrandomizes
the key. Both the RSA and the Blum–Blum–Shub generator need to generate two
1024 bit primes. The textbook method chooses uniformlyrandom integers of the
appropriate size and tests them successivelyfor compositeness. This requires tests
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on expectedly2 · 1024 · ln1024 ≈ 14,200 different integers bythe prime number
theorem, thus consuming approximately1.8MB of seed randomness. The primality
tests themselves might consume additional randomness if a probabilistic variant
is employed. There are cheaper methods, though, reducing the necessaryamount
of randomness to 2048 bits only. For details on this matter see Loebenberger and
Nüsken (2014).

The linear congruential generator additionallyrandomizes the initial state and
thus consumes further 2048 bits for seeding.

Taking the throughput of the physical generators into account, the amount of
time needed between possible reseeding ranges from 128

8 · 1
29,000 = 0.00055 s for

the textbook AES generator seeded bythe Bergmann generator to 6144
8 · 1

2.2 = 349 s
for the linear congruential generator seeded by/dev/random.

While the statistical qualityof each generators output is not dependent on the
reseeding, the amount of total entropy is not raised by any internal calculation,
making regular reseeding sensible. Using the Bergmann generator for seeding, even
the linear congruential generator can be reseeded every 0.026 s, which seems a
reasonable time span especiallyin networking contexts.

5 Conclusion and Future Work

We implemented a number of software random generators and compared their
performance to physical generators. A blocking /dev/random is waytoo slow
to be of practical use as the onlysource of (pseudo-)randomness, except for seeding
software generators. The generator PRG310-4 is roughlyas fast as our Blum–Blum–
Shub implementation. However, both are surpassed bythe RSA generator when run
with a fast parameter set, which offers the same level of security.

The most interesting result is the vast difference between blocking and non-
blocking random devices. This illustrates in a nice way the still open question
whether lots of potentially bad randomness surpass the parsimonious use of
guaranteed high-qualityrandomness.

The results also suggest a profitable symbiosis of hardware-generated seeds
and number-theoretic high throughput—rather the reverse of the situation in other
cryptographic contexts, say, the Diffie–Hellman exchange of keys for fast AES
encryption.

The speedup introduced by the AES-NI instruction-set allows to generate
151MB/s on a laptop computer, surpassing the requirements of the NGINX cluster
(1.3MB/s) byfar, implying a negligible CPU-load.

Practical use of our findings has not taken place yet. Depletion of
/dev/random is a realistic issue—workarounds for implied problems even
suggest using the non-blocking /dev/urandom as a physical generator, see
Searle (2008). However, prohibiting the use of /dev/urandom for keygeneration
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is also under debate, see Bernstein (2014), and there seems to be no consensus in
the near future.

As a next step, implementing and testing on kernel level using optimized
implementations is recommended.

Implementing an AES based random generator in the Linux kernel appears to be
reasonable, but other platforms (i.e. ARM) mayfavor other hardware-accelerated
ciphers for better performance and less CPU load. Thus the cipher must be made
configurable.
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This volume is devoted to the 60th birthday of Peter Paule



Foreword

This volume is dedicated to Peter Paule on the occasion of his 60th birthday. It
contains the proceedings of the workshop, Combinatorics, Special Functions and
Computer Algebra (Paule60), held on May 17–18, 2018, at the Research Institute
for Symbolic Computation (RISC) in Hagenberg, Austria. This is overwhelmingly
merited in light of Peter’s distinguished career. A former Humboldt Fellow, Peter
has been a major player in the applications of computer algebra and has been
director of RISC since 2009. He is a member of Academia Europaea and a Fellow
of the American Mathematical Society.

In the early 1980s, Professor Johann Cigler gave a wonderful talk at an
Oberwolfach conference on combinatorics. In the talk, he extolled the outstanding
work of several of his students especially that of Peter Paule. Subsequently, at the
next Oberwolfach conference on combinatorics, Peter himself gave a presentation,
and I was more than pleased to make the acquaintance of this rising star. This was
the beginning of a grand and lasting friendship.

I have written more papers with Peter than anyone else, 15 in all. The majority
concern the computer algebra implementation of P. A. MacMahon’s Partitions
Analysis (often joint with Peter’s student, Axel Riese). This collaboration was one
of the most wonderful adventures of my career. Notable partly because this allowed
us to track down a number of fascinating mathematical objects, but mostly because
it is a joy to collaborate with this optimistic man who is always full of joie de vivre.

Peter is the opposite of the stereotypical mathematician. As we all know, the
way to get ahead in mathematics is to sit alone in a small room for days on end
concentrating intensely on esoteric abstractions. As a result, a number of us are
somewhat socially challenged. Peter has completely avoided anything like this
outcome. Not only do mathematicians enjoy time spent with him, but often the
RISC visitor’s entire family remembers him warmly. Indeed, he is often the only
mathematician they do remember.
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viii Foreword

It is a great honor to be asked to prepare this foreword. Best wishes to you, Peter,
from all your friends and admirers (and me especially). We look forward to your
many future achievements.

University Park, PA, USA George E. Andrews
November 2019



Preface

The book is centered around Algorithmic Combinatorics which covers the three
research areas of Enumerative Combinatorics, Special Functions, and Computer
Algebra. What these research fields share is that many of their outstanding results
do not only have applications in Mathematics but also other disciplines, such as
Computer Science, Physics, Chemistry, etc. A particular charm of these areas is
how they interact and influence one another. For instance, combinatorial or special
functions’ techniques have motivated the development of new symbolic algorithms.
In particular, the first proofs of challenging problems in Combinatorics and Special
Functions were derived by making essential use of Computer Algebra.

This book addresses these interdisciplinary aspects with research articles and up
to date reviews that are suitable for graduate students, researchers, or practitioners
who are interested in solving concrete problems within mathematics and other
research disciplines. Algorithmic aspects will be emphasized and the corresponding
software packages for concrete problems are introduced whenever applicable.

When the Search for Solutions Can Be Terminated (Sergei A. Abramov)
addresses the problem that in algorithms often the nonexistence of solutions can
only be detected in the final stages, after carrying out a lot of heavy computations.
In this article, it is shown how to introduce early termination checkpoints in an
algorithm for finding rational solutions of differential systems.

In Euler’s Partition Theorem and Refinements Without Appeal to Infinite Prod-
ucts (Krishnaswami Alladi), combinatorial arguments on 2-modular Ferrers dia-
grams are combined in a novel way in order to find and prove analogues of some
important fundamental theorems in the theory of partitions.

In Sequences in Partitions, Double q-Series and the Mock Theta Function
ρ3(q) (George E. Andrews), a skillful mix of techniques based on q-difference
equations, generating functions, series expansions, and bijective maps based on
the combinatorics of integer partitions (and overpartitions) are applied to gain new
insights of combinatorial aspects of a family of double sum hypergeometricq-series
and their connection to many famous identities for integer partitions.

In Refined q-Trinomial Coefficients and Two Infinite Hierarchies of q-Series
Identities (Alexander Berkovich and Ali Kemal Uncu), symbolic summation tools

ix
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and classical methods from enumerative combinatorics are combined to discover
and explore new doubly bounded polynomial identities in terms of refined q-
trinomial coefficients.

In Large Scale Analytic Calculations in Quantum Field Theories (Johannes
Blümlein), a general overview of computer algebra and special function tools is
presented that are heavily used to solve large-scale problems in relativistic renor-
malizable quantum field theories. These analytic tools originate from algorithmic
combinatorics or are suitable for problems coming from this field.

In An Eigenvalue Problem for the Associated Askey–Wilson Polynomials (Andrea
Bruder, Christian Krattenthaler, and Sergei K. Suslov), an auxiliary bivariate
function is introduced that links to associated ordinary Askey–Wilson polynomials.
With the aid of computer algebra, from this relation an eigenvalue problem for the
associated Askey–Wilson polynomials is constructed.

Context-Free Grammars and Stable Multivariate Polynomials Over Stirling
Permutations (William Y.C. Chen, Robert X.J. Hao, and Harold R.L. Yang) resolves
two open questions raised by Haglund and Visontai in their study of stable
multivariate refinements of second-order Eulerian polynomials.

In An Interesting Class of Hankel Determinants (Johann Cigler andMike Tyson),
Hankel determinants dr(n) of a binomial sequence are considered for which for
general integers n and r no closed-form exists. Using the methods presented here,
formulas valid for all r ≥ 0 and particular arithmetic progressions are given.

In A Sequence of Polynomials Generated by a Kapteyn Series of the Second
Kind (Diego Dominici and Veronika Pillwein), an infinite sum involving squares
of Bessel-J functions with an extra parameter n is explored. A closed-form repre-
sentation is derived for this series in terms of a specific polynomial whose degree
depends on n, and a recurrence relation is computed and verified with computer
algebra methods that produces the coefficients of this polynomial efficiently.

In Comparative Analysis of Random Generators (Johannes vom Dorp, Joachim
von zur Gathen, Daniel Loebenberger, Jan Lühr, and Simon Schneider), the
research field of random number generators is introduced for nonexperts. A careful
comparison between pseudorandom number generators and hardware controlled
versions is carried out carefully in terms of their output rate.

In Difference Equation Theory Meets Mathematical Finance (Stefan Gerhold
and Arpad Pinter), the authors make those two ends meet unexpectedly through
Pringsheim’s theorem and two asymptotic methods (saddle point and Hankel
contour asymptotics).

In Evaluations as L-Subsets (Adalbert Kerber), logical systems beyond classical
Boolean logic are considered by utilizing lattice-valued evaluations of statements in
a novel way. In particular, examples are elaborated that demonstrate the practicality
of real-world problems.

In Exact Lower Bounds for Monochromatic Schur Triples and Generalizations
(Christoph Koutschan and Elaine Wong), exact and sharp lower bounds for the
number of generalized monochromatic Schur triples subject to all 2-colorings
are explored. In their challenging enterprise, they use low-dimensional polyhedral
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combinatorics leading to many case distinctions that could be treated successfully
by the symbolic computation technique of cylindric algebraic decomposition.

In Evaluation of Binomial Double Sums Involving Absolute Values (Christian
Krattenthaler and Carsten Schneider), double sums from a general family are
considered, where the main difficulty lays in the appearance of absolute values.
It is shown that these sums in general can be expressed as a linear combination of
just four simple hypergeometric expressions.

InOn Two Subclasses of Motzkin Paths and Their Relation to Ternary Trees (Hel-
mut Prodinger, Sarah J. Selkirk, and Stephan Wagner), paths with alternating east
and north-east steps are shown to give nice enumeration formulas via generalized
Catalan numbers.

In A Theorem to Reduce Certain Modular Form Relations Modulo Primes
(Cristian-Silviu Radu), a question raised by Peter Paule is settled that is of
algorithmic relevance to the theory of modular forms. It is shown that the problem
to decide if a certain modular form relation modulo a prime holds can be reduced to
check congruences modulo p between meromorphic modular forms.

In Trying to Solve a Linear System for Strict Partitions in “closed form” (Volker
Strehl), a challenging linear system for strict partitions in relation to Schur functions
and symmetric functions is investigated that utilizes graph theory in combination
with the theory of partitions in a novel way.

In Untying the Gordian Knot via Experimental Mathematics (Yukun Yao and
Doron Zeilberger), two new applications of automated guessing are given: one
related to enumerating spanning trees using transfer matrices and one about
determinants of certain families of matrices. Using symbolic computation, the
painful human approach is avoided.

This book is an offspring of the workshop “Combinatorics, Special Functions and
Computer Algebra” at the occasion of Peter Paule’s 60th birthday (https://www3.
risc.jku.at/conferences/paule60/). We would like to thank Tanja Gutenbrunner and
Ramona Pöchinger from RISC for all their help to organize this wonderful event.
In particular, we would like to thank the Austrian FWF in the frameworks of
the SFB “Algorithmic and Enumerative Combinatorics” and the Doctoral Program
“Computational Mathematics” for the financial support. Furthermore, we thank
Karoly Erdei for providing us with the above picture that illustrates Peter Paule’s
mathematical passion. Finally, we would like to thank all the authors for their
stimulating contributions and the referees in the background for their valuable
comments.

Linz, Austria Veronika Pillwein
Linz, Austria Carsten Schneider
November 2019
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