each copyright holder, and in particular use them only for noncommercial pur- mission of the copyright holder. (Last update 2016/05/18-14 :15.)

This document is provided as a means to ensure timely dissemination of scholarly ~ are maintained by the authors or by other copyright holders, notwithstanding that ing any of these documents will adhere to the terms and constraints invoked by poses. These works may not be posted elsewhere without the explicit written per-

and technical work on a non-commercial basis. Copyright and all rights therein these works are posted here electronically. It is understood that all persons copy-

GENE COOPERMAN, SANDRA FEISEL, JOACHIM VON ZUR GATHEN & GEORGE HAVAS (1999). GCD of Many Integers. In COCOON ’99, T. ASANO, H. IMAL D. T. LEE,
S. NAKANO & T. TOKUYAMA, editors, number 1627 in Lecture Notes in Computer Science, 310-317. Springer-Verlag. ISSN 302-9743 (Print) 1611-3349 (Online). URL

http://www.springerlink.com/content/gm5wjjcaaxx544wl/fulltext.pdf.

NW:SQ{&, 1§54 C 1 g

GCD OF MANY INTEGERS

GENE COOPERMAN*, SANDRA FEISEL,
JOACHIM VON ZUR GATHEN AND GEORGE HaAvas!

College of Computer Science
Northeastern University
Boston, MA 02115, USA

gene@ccs.neu.edu

F'B Mathematik-Informalik, Universitat—GH Paderborn
33095 Paderborn, Germany
{feisel,gathen}@uni-paderborn.de
School of Information Technology
The University ol Queensland
Queensland 1072, Australia
havas@cs.uq.edu.au

Fatended Abstract

Abstract. A probabilistic algorithm is exhibited that calculates the ged
of many integers using geds of pairs of integers; the expected number of
such geds is less than two.

1. Introduction

In many algorithms for polynomials in Z[z], e.g., the computation of geds or
[actorization, one is interested in making a polynomial primitive, i.e., comput-
ing and removing its content. The primitive polynomial remainder sequence
needs such gcd computations but is not used in practice: Ho & Yap (1996)
stale that “the primitive PRS has the smallest possible coefficients, but it
is not eflicient because content computation is relatively expensive”. Geddes

*Supported in part by NSF Grant CCR-9509783
TSupported in part by the Australian Research Council

et al. (1992), Chapter 7, write about the primitive polynomial remainder se-
quence: “The problem with this method, however, is that each step requires
a significant number of GCD operations in the coeflicient domain. [...] The
extra cost is prohibitive when working over coefficient domains of multivariate
polynomials.”

We remedy this sorry situation for Z[z] by computing efficiently the ged
of random linear combinations of the inputs. More precisely, we solve the
following problem.

Given m positive integers aj, ..., a, with m > 1, compute
ged(ai, ..., a,) with a small number of pairwise geds, i.e., geds of
two integers each.

MAIN THEOREM. This problem can be solved by taking an expected numn-
ber of less than two pairwise geds of random linear combinations of the input.

The algorithm we state is quite natural. One would heuristically expect it
to work quite well, and indeed our experimental results support the heuristic
assumption. Unfortunately, we cannot prove what we expect to be true about
it.

Our main contribution is a modification which makes the approach amenable
to a precise analysis, and indeed we can then prove that its success probability
comes arbitrarily close to what we conjecture to be true.

We stress that we are not doing an average-case analysis but rather look
for a provably reliable method that works well no matter what the inputs are.
To our knowledge, this problem has not been treated in the literature.

The use of random linear combinations is readily suggested by the success of
that method for polynomials, but we do not know how to prove that the naive
implementation of this idea works, although it does in practice. Qur main algo-
rithmic contribution is a clever choice of the range for the random coefficients.
There is a natural (heuristic) upper bound on the success probability of any
algorithm; with our choice of the range, we can prove a lower bound that is
reasonably close to that upper bound. In fact, the lower bound can be moved
arbitrarily close to the upper bound, but at the expense of requiring very large
coefficients, which limits the practical usefulness.

However, we believe that our method, free of any heuristic or distributional
assumption, makes the content computation for integer polynomials eminently
practical.

2. Tterative gcd computation

By the associativity of the ged

ged(ay,...,0m) = ged(ged(as, az), as,. .., am)
= god(...(ged(ged(ar, asz),a3),. .., am),

the most obvious way to solve Problem 1 is to compute the pairwise geds
successively and to stop whenever a result is [. This iterative computation of
pairwise geds will work well for random inputs, but there are “nasty” inputs
on which that method will need m — 1 pairwise gcd computations.

If the inputs are randomly chosen integers this naive algorithm does usually
not need all the m — 1 steps:

FACT 1. Lel two integers a and b be chosen uniformly at random from the
positive integers up to N. Then for large N
6

2

prob(ged(a,b) =1) = ¢(2)! = = =~ 0.6079271016.

T

For a proof, see Knuth (1981), Section 4.5.2.

In this case, the probability that a; and e, are already coprime is about
0.6, and for randomly chosen ay, ..., a,, we can therefore expect that the naive
algorithm will already stop after about two computations of a pairwise ged.

Heuristic reasoning says that a prime p divides a random integer a with
probability p~!, and m random integers with probability p~™. Assuming the
independence of these events, we have

prob(ged(ay,...,an)=1) = H(l =pm M= Llm) T

P

This can be made into a rigorous argument showing that the probability
that m random integers, as in Fact 1, have trivial ged tends (with N — oo) to
((rn)~'. The first few values are:

w12 3 AR 6 i 8 9 10
¢(m)~' [0.608 0.832 0.924 0964 0983 0.992 0.996 0.998 0.999

Although this strategy is quite successful for randomly chosen inputs, there
exist “nasty” sequences, in which the m — | steps in the above algorithm are
really necessary.

EXAMPLE 2. Let py,...,pn be the first m primes, A = py -+ - p,,, and a; = A/p;
for eachi. Then ged(ay, ..., a,,) = 1 but for any proper subset S of {1,...,m},
ged({aiii € S}) is non-trivial. So the successive computation of pairwise geds
does not give the right output until o — 1 steps in the above algorithm have
been performed.

We do not address the question of representing the ged as a linear combi-
nation of the inputs. This problem has been considered in Majewski & Havas

(1995).

3. Random linear combinations

In the case of polynomials over a field /', the use of random lincar combinations
is known to be successful.

FACT 3. Let F be a field, ay,...,a, € Flz] be nonzero polynomials of degree
at most d, h = ged(ay,...,an), A C F finite, 23,...,2m € A be randomly
chosen elements, and g = a3 + 3 5., Ti0; € Flz]. Then h divides ged(ay, g),
and % 4

prob(h = ged(a;,g)) > 1 — d/#A.

This is based, of course, on resultant theory (Diaz & Kaltofen (1995),
von zur Gathen et al. (1996)), and also works for multivariate polynomials.
So for the polynomial case, we expect that with only about one calculation of
a pairwise ged of two polynomials, we find the true ged of many polynomials
provided that A is chosen large enough.

The following algorithm is a natural adaptation to integers.

ALGORITHM 4. Probabilistic ged of many integers.

Input: m positive integers aj,...,a, with a; < N for all i, and a positive
integer M.

OQutput: Probably ged(ay, ..., ay).

1. Pick 2m uniformly distributed random integers x,,...,2,, and yy,...,y

P JSI

in{l,...,M}, and compute © = Y e and oy = D e Al

2. Return ged(z,y).

Then g = ged(ay,. .., ay) divides ged(z, y), and we can easily check equality
by trial divisions by ged(z,y). This is a Monte-Carlo algorithm and we want
to prove a lower bound for its success probability, i.e., for the probability that
ged(z,y) equals g.

Due to Iact | we cannot expect this probability to be as high as in the
polynomial case, but experiments show that this strategy seems to have roughly
the expected success probability of 6/7%. For two lists we have tested whether
two random lincar combinations of the list elements have the same ged as the
list elements. The list “nasty” has 100 elements as described in Example 2 and
whose largest entry has 220 decimal digits, and “rand” is a random lists with
100 elements of up to 220 decimal digits. Each success rate is the average of
5000 independent tests.

Table 1: random linear combinations for two input sequences.

list M success rale | list M success rate
nasty 2 0.7542 rand 2 0.6066
nasty 10 0.6522 rand 10 0.6016
nasty 100 0.6146 rand 100 0.6078
nasty 1000 0.602 rand 1000 0.6098
nasty 30030 0.5952 rand 30030 0.6038

Table 1 shows that one ged computation of two random linear combinations
of the a; gives the right answer in about 60% of the cases, i.e., in most of the
cases, and this seems to be somewhat independent of the size of M.

Our question is: how we can prove the probability that ged(z,y) = ¢ to be
high.

The following experiment shows that some prudence is indicated in these
matters. We adapted the algorithm from Fact 3 literally to integers and ran
it on the “nasty” input, sorted by size. Then the success probability dropped
dramatically to only 5%; on the “rand” list, it sagged to 30%.

Remembering Fact 1, the solution of the problem would be easy if # and
y were random numbers, but although the results in Table 1 show that they
behave approximatively as if they were uniformly distributed, this is not lit-
erally true. So we have to find another way to bound the probability that
g # ged(z,y).

6

4. A probabilistic estimate

It would, of course, be sufficient to show that our random linear combination z
behaves like a random integer in its range. Then the bound ¢(s)~' would hold
for the ged of s random linear combinations. In any case, we cannot reasonably
hope to have a better success probability than this bound. Tlowever, we want a
(small) bound on M, possibly in terms of the inputs. Then, if I 4
we have
= Z zig; < mMN = B,
1<i<m

but z is clearly not uniformly distributed in {1,...,B}. Even if it were, the
probability that a prime p divides would not be the exactly desired 1/p, but
only close to it, since B is not necessarily a multiple of p. We circumvent this
obstacle by choosing M to be the product of the first + primes. For r = 6, we
have M =2-3-5-7-11-13 = 30030. (In fact, for our purposes also a multiple
of this number suffices.) Then [or all primes p up to the rth prime p,, p divides
a random linear combination with probability exactly |/p. For our probability
estimate, the main contribution becomes

[[a-p),

p<pr

just as for the unavoidable ((s)~! = [1,(1 — p*). We only execute this ideca
for s = 2, and abbreviate
n= -9

pﬁpli
We fix the following notation: Let m > 2,r > I, let ay,...,a, be positive
integers, all at most N, M a multiple of p; - - p,., and let #1,.. ., Zm, Y1, ..., Ym
be uniformly distributed random integers between | and M, & = Do Ll A

and y = ElSiQn Yidi.
For the probability estimate we need the following lemma:

LEMMA 5. If ged(ay,...,an) = 1, then the events that p;, divides @ for 1 <
k < r are independent.

Proor. Let 1 £ k < r. Since ged(ay,...,ay,) = 1, there exists an index i
such that py { a;. Then for any zy,...2;y,2,41,...,2, € Z the congruence

Digs =~ E zia; mod py
1]

==

m—1

has exactly one solution z; modulo py. Hence, there are p}' ' solutions with
1 S EBisonnemis py ared

Z z;a; = 0 mod py.

1<i<m

Now let I € {l,...,r} and ¢ = [],.; px. By the Chinese Remainder Theorem,
we have erf?’?_l = ¢" ' solutions modulo g gi\f'ing r = Omod ¢q. Since
q | M, this congruence has ¢™~! - (M/q)™ solutions | < z,...,2, < M.

Hence,
m— M =
e Rn LR 1)
Droby ¢ & o Tr————,]
prob{q i .
In particular, prob{px | 2} = 1/p; lor each k£ < r, and since (1) holds for each
subset of {1,...,r}, the events are independent. O

THEOREM 6. With the above notation, let P be the probability that ged(ay, . .
ged(z,y). Then

2.04 2 | 1
P > n—— - Inln M . —Inlnp,
i pratlnpp M (11 Grask In* M Fy 21n’ p, Sl)
A g mN
M? M(In(mMN) -3/2)
PROOF. We first assume that gcd(ay,...,a,) = 1. In the following, p is a

parameter ranging over the prime numbers. Let «, be the probability that p
divides . As in the proof of the lemma, there is an index j < m with p { a;.
If we fix 7, we find that the congruence

Tia; = — E zia; mod p
]

has al most one selution for z; modulo p if the ; with i # j have already been
chosen. There are M™~! choices for those z;. Since there is one possibility
for z; modulo p to solve this congruence, there are at most [%1 choices for z;
between 1 and M. Ilence,

iMm—l. M M
S e

Mm™ M

This bound is close but not equal to p~*. Obviously, «, is also the probability
for p to divide y, and since the @; and y; are chosen independently, p divides

e i =

both = and y with probability . Then the probability P that there is no
prime which divides z and y is at least 1 — 37 <p @, Where B = mNM. Tt
sullices to regard primes up to B since this is an upper bound for x and y.

We distinguish three cases for such primes p. All the estimates are valid for
any value of M except that our special choice of M plays a role in case 1, but
that is the case that provides the dominant term.

Case 1: p < p,. Then p divides M and o, < 1/p (in fact, equality holds).
Case 2: p, < p< M. Then o, < (M—m"'—l =1/p+1/M.
Case 3: p> M. Then a, < ;4

Fuarthermore, we know by Lemma 5 that the events that p divides @ are inde-

pendent for p < p,, i.e., for these small p’s the probabilities are multiplicative.
We obtain

IesiE

VAN

prob(dp < p.:p | @ and p | y) + prob(dp > pip | z.and p | y)
< 1—prob(Vp<p:pfzorpty)+ Z (.‘e;

PPy

Il

T
E
:cs

|
M

We now use several bounds [rom Rosser & Schoenfeld (1962): Inequalities
(3.17) and (3.20) for-3" <penr 1/p, Theorem 2 for the number () of primes
up to B, and an estimate on p. 87 for 37 l/pz.

Yt ¥ oo+g Y o+ Y oo

B

fa Breps it <M Py, \p<B
e : | w(B) —r
-~ s -— I T ﬁ/{ - - — 1 1 s ok i I
- 1§<:;JPZ+M(” i +1n3M+21n3pT- nnp)+ M?
2.04 9 { ;
Sk S s InIn M S N
Drgr 1N pryy Rlre M (Il nM + E M [D1n? ,0 nlnp)

LAY 2
M? ~ M?*(n(B)-3/2)

Substituting B = mM N we obtain

P>

2.04 2 1 |
—————— — (Inln M : — —Inlnp,
polnpy M (“ i R T “p>
iy r mN

M? M(Iln(mMN)-3/2)’

as claimed. If g = ged(aq,...,an) # 1, the bound holds for a,/g,...,an/g
with N replaced by N/g. O

We note that only the last summand in the lower bound is input driven; it
is easy to choose M so that it becomes arbitrarily small. The other terms only
depend on our choices of r and M in the algorithm. Since 7, tends to ((2)7!
the lower bound can be brought arbitrarily close to that limit.

?

COROLLARY 7. For any € > 0 one can choose r and M such that P > ((2)™' —
c.

This is a satisfying result, since we have no right to expect a better bound
than the ¢(2)~!, which holds (in the limit) for truly random values.

COROLLARY 8. Let r > 6 and M be a multiple of p, -+ p,. Then

mN
M(In(mMN)—3/2)

P > 0.5756 —

ProoF. We have 5, > ((2)~' for all » > 1, and
gt
In®M 2In®p,

2
i (in InM + —In lnp,) < 0.0000983402

for r =6 and M = p;---pg = 30030. The left hand side decreases strictly for
increasing r. Hence,

2.04 mN
— 0.0000983402 —
1T 7 2 M(In(mMN) — 3/2)

0 mN
> 0.575625357T7 — M(In(mMN) —3/2) =

P > 0.6079271016 —

COROLLARY 9. Let r > 6, and M > 10000mN/(51 + 6la(rmN)) be a multiple
of py -+ p.. Then P > 57.5%.

10

PROOF. We have In(M) > In(30030) > 10 and

it mN(51 + bln(mV))
10000 N (In(M) + In(mN) — 3/2)
6(8.5 + ln(mA))
2 HTH6 — —
> D08 S 00(8.5 + o[)

P > 0.5756

T I A
= 0.5756 e 0.575. O
So, if M is chosen large enough, Algorithm 4 has a success probability of

about 0.57. The M chosen in Table | is far too small compared to the M
suggested in Corollary 9. The results in that table suggest that P is even
somewhat larger than in the corollary and rather independent both of the size
of M and of its choice as a multiple of the small primes, but we do not know
how to prove anything about this.

Acknowledgements

We are grateful to Mark Giesbrecht and Boaz Patt-Shamir for helpful discus-
sions.

References

ANGEL Diaz AND ERICH KALTOFEN, On computing greatest common divisors with
polynomials given by black boxes for their evaluations. In Proc. Int. Symp. Symbolic
and Algebraic Computation ISSAC 95, Montréal, Canada, 1995, 232-239.

J. voN zZUR GATHEN, M. KARPINSKI, AND 1. E. SupArLINSKI, Counting curves and
their projections. Computational complexity 6 (1996), 64-99. Extended Abstract in
Proc. 25th ACM Symp. Theory of Computing.

K. O. Geppes, S. R. CZAPOR, AND G. LABAHN, Algorithms for Computer Algebra.
Kluwer Academic Publishers, 1992.

CHUNG-YEN Ho aAND CHEE KENG YAP, The Habicht approach to subresultants.
Journal of Symbolic Computation 21 (1996), 1-14.

DonaLD E. KNUTH, The Art of Computer Programming, Vol.2, Seminumerical
Algorithms. Addison-Wesley, Reading MA, 2 edition, 1981.

BoHDAN S. MAJEWSKI AND (GEORGE Havas, A solution to the extended ged prob-
lem. In Proc. ISSAC ’95. ACM Press, 1995, 248 253.

11

J. B. ROSSER AND L. SCHOENFELD, Approximate formulas for some functions of
prime numbers. Ill. J. Math. 6 (1962), 64 -94.

R. Zirrey, Effective polynomial computation. Kluwer Academic Publishers, 1993.

