http://dx.doi.org/10.1137/0213050. Extended abstract in Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, Boston MA (1983).

This document is provided as a means to ensure timely dissemination of scholarly are maintained by the authors or by other copyright holders, notwithstanding that ing any of these documents will adhere to the terms and constraints invoked by poses. These works may not be posted elsewhere without the explicit written per-
and technical work on a non-commercial basis. Copyright and all rights therein these works are posted here electronically. It is understood that all persons copy- each copyright holder, and in particular use them only for noncommercial pur- mission of the copyright holder. (Last update 2016/05/18-14 :18.)

JOACHIM VON ZUR GATHEN (1984). Parallel algorithms for algebraic problems. SIAM Journal on Computing 13(4), 802—-824. URL

Sth"--‘-'l _J- L"'?H"]:"' B 1984 Society for Industrzl snd Applied Machematics
Wol. 13, Me 4, Nevember 1984 i

FPARALLEL ALGORITHMS FOR ALGEBRAIC PROBLEMS*

JOACHIM von zur GATHENY

Abstract. Fast parallel algorithms are presented for the following problems in symbsolic manipalation
of univariate polynomials: computing all entries of the extended Euclidean scheme of two polynomials over
an arbitrary field, ged and lem of many polynomials, factoring polynomials over finite ficlds. and the
squarctree decomposition of polynomials over fields of characteristic zero and over finite fields.

Faor the following estimates, assume that the input polynomials have degree at most n, and the finite
field has p” clements. The Euclidean algorithm is deterministic and runs in parallel time Q{log® n). All the
other algorithms are probabilistic (Las Vegas) in the general case, but when applicable to or R, they can
be implemented deterministically over these fields. The algorithms for ged and lem wse parallel time tiil'[l'.:ug-1 #b.
The factoring algorithm runs in parallel time O{log? nlog® (d+1)log p). The algorithm for squarefree
decompesition runs in parallel time O(log® n) for characteristic zero, and in parallel time O{log® n+
(d—1}log p} for finite fields. All Las Vegas algorithms have failure probability less than 277, For all
algorithms, the number of processors is polynomial in a

K_c:.r _'lmrﬂs. parallel processing, algebraic computing, symbolic manipulation, Euclidean algorithm,
factorization of polynomials, squarefree decomposition

1. Introduction. In Borodin-von zur Gathen—Hoperoft [1982] the following pro-
gram is laid out: obtain a “theory package for parallel algebraic computations,” i.e.
fast parallel computations for the widely used problems of symbolic manipulation in
an algebraic context. In that paper, two basic problems were considered: solving
systems of linear equations and computing the ged of polynomials, both over arbitrary
ground fields.

The present paper continues this program, and fast parallel solutions to the
following algebraic problems are given: computing all entries of the extended Euclidean
scheme of two polynomials over an arbitrary field, computing the ged and lem of many
polynomials over an arbitrary field, factoring polynomials over finite fields, and the
squarefree decomposition of polynomials over fields of characteristic zero and over
finite fields.

As our model of parallel computation, we can take an algebraic PRAM (with
instructions +, —, ¥, /, constants) or the parallel algebraic computation (directed
acyclic) graphs, PACDAG for short, which we describe informally below. We will
describe the algorithms of this paper in “high-level language,” and not give actual
implementations on a PACDAG. A more formal description would follow the lines
of the discussion in Strassen [1983] of (one-processor) algebraic computation trees
and the collections that they compute.

A PACDAG has two kinds of processors and (shared) variables, “arithmetic"
and “boolean” ones. At each node of the (rooted) directed acyclic computation graph,
each arithmetic processor can either perform an arithmetic operation (+, —, *, /) on
two arithmetic variables, or access an arithmetic input variable, or fetch a constant
from the ground field. Each boolean processor can either compute the negation or
conjunction of (one resp. two) boolean variables, or it can take an arithmetic variable
x and set a boolean variable to “true” if x # 0, and to *false’ otherwise. (One can in
fact simulate these boolean computations in the ground field if a conditional division
instruction of the form “if x#0 then y=1/x" is allowed.) No write-conflicts are

* Received by the editors February 8, 1983, and in revised form August 12, 1984, An extended

abstract of this paper appeared in Proc. 15th ACM Symposium on Theory of Computing, Boston, 1983,
pp. 17-23.

t Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M55 1A4.

ALGORITHMS FOR ALGEBRAIC PROBIEMS B3

allowed. At each node of the graph, each of the branches of the graph emanating from
that node is labeled with a boolean variable; if on a given input the computation
reaches that node and exactly one of these boolean variables is true, then the corre-
sponding branch is chosen; otherwise the computation is not defined at that input.

At each leaf, the output is given by a sequence of arithmetic variables. Thus a
PACDAG computes a collection in the sense of Strassen [1983].

Any PACDAG can obviously be deseribed by a string over a finite alphabet,
provided the field constants used can be described in this way. A family (P,),.n of
PACDAGs is uniform if the description of P, can be generated by a deterministic
Turing machine in space O{log n), given n in unary as input. {See Ruzzo [1981], Cook
[1983].) All algorithms of this paper are uniform.

We arc concerned with two cost measures of a PACDAG: its parallel time (=depth
of the graph =length of longest path from root to any leaf) and its size { = number of
processors). All the algorithms of this paper work in parallel time log®" » {usually
Oflog® n)) and use n """ processors, where » is the input size. One additional feature
is needed for some algorithms: a random generator that produces elements of a finite
subset of the ground field at random, i.e. new “random variables"” from which these
random elements can be read.

Among the problems for which we do not have a fast parallel algorithm are the
ged of two integers and the factorization of a polynomial with rational coefficients,
We give a reduction from the first problem to a problem related to the second, namely
computing short vectors in integer lattices.

All our results belong to the “asymptotic approach’ to parallel algorithms, where
one is interested in obtaining the fastest possible parallel al gorithms, allowing an almost
arbitrary (say, polynomially bounded) number of processors. This contrasts with the
approach of getting a speed-up from sequential to parallel time close to the number
of processors: Tocqf Toae is approximately the number of Processors,

One interesting phenomenon occurs: all the problems eventually reduce to solving
systems of linear equations. Hence the paramount role of the latter problem. On the
theoretical level, this is expressed L0 a certain extent by Valiant's [1980] universality
of the determinant (disallowing branching and division).

The algorithms for linear algebra in Borodin-von zur Gathen-Hoperoft [1982]
used a polynomial number of processors, but this number was impractically large.
Soon after, Berkowitz [1984] presented an algorithm for computing the determinant
with parallel time Q{log® n) and O(n**) processors.

2. The extended Fuclidean scheme for polynomials. We start with an easy result
about division with remainder of polynomials.

Lemma 2.1. One can compute the quotient and remainder of two polynomials of
degree at most n in parallel time O(log® n).

Proof. Let f, g€ F[x] be given, where F is an arbitrary field, and k=
deg f —deg g +1 = n. Their quotient g € Flx] is uniquely determined by the condition
deg (f—gg) <deg g which can be expressed by a nonsingular system of & lincar
equations in the k coefficients of g. This system can be solved in parallel time Oflog® k).
as in Borodin—von zur Gathen-Hoperoft [1982]. Computation of the remainder then
takes Oflog n) parallel steps. O

Actually, quotient and remainder can be computed in parallel time Oflog n). This
was shown by Reif [1983] under the assumption that F supports a fast Fourier
transform, and by Eberly [1984] in general.

204 JOACHIM WO FLUR GATHEN

Let f, g F[x] with 0=deg g =m = n=deg f, where F is an arbitrary field. We
set a,=f, @, =g and consider the extended Euclidean scheme for { f, g):

dy = g8, T aa, Sxag+ 1z = da,
@y =g di—y ¥ dy &8+ 181 = dp-y,
By = Geiln Sdp + L = ay.

where the following conditions are satisfied for 2=k=10: a, ¢, g S ke F[x],
deg ag <dega,_y, Sa=1, =0, 3=0, =1, SH=SK @5y and K=
feos— Gx—i1le—q. Thus the g's are the quotients and the a’s the remainders of Euclid’s
algorithm, ged (f, g) is the unique monic scalar multiple of a; by convention, all ged’s
of polynomials in F[x] are monic) and the §'s and t's are the “cumulants”, *conver-
gents” or “‘continuants’”. (The terminology is rather unsatisfactory. The last term,
proposed by a certain Muir, provoked an amusing controversy (see Muir [1878]).)
Sequential algorithms for computing these polynomials are important and well-studied;
see Knuth [1981, 4.6.1], for an overview. One interesting feature is that g, - -, q;
can be computed faster than can ay, - - -, @ (see Strassen [1983]).

The above conditions imply that a, has **small’” degree and is a linear combination
of f and g with coefficients s; and f. Obviously one can multiply a,, 5, & by a
polynomial of small degree and conserve these properties. The following lemma shows
that this is the only way of obtaining these properties, and thus gives a characterization
of ay, 5, f. Our proof follows Kronecker [1881]; see Knuth [1981, Exercise 4.6.1-26],
for a different approach.

Lemma 2.2, Let f, g, ap, 5, i € F[x] be as above, and a, s, t € F[x] with a, t # (.
Then the following two conditions are equivalent:

(i) sf+ig=a, and deg a+dep < n.

(1i) There exist ke{l,--+-,1} and be F[x] such that

a=ba, s=bs, 1=hg,
deg a, =deg a < (deg a,_, +deg a,)/2 <deg a,_,.

Furthermaore, if the conditions are satisfied, then k and b in (1i) are uniquely determined,
Proof. By induction on k one proves that degth =% ,_,., deg g and degrn+
deg ag—y = n, and then (i) obviously follows from (ii).
For the other implication, we define k{1, ---,1} by

deg a, =deg a <deg a;_,.

This determines k uniquely, since

deg a, <deg a;_, <+ + < deg a,,

deg a; =deg ged (f, g) =deg a < n =deg a,.
Eliminating g from

sf+he=a,, sf+ig=a,
we get
(50— st) f = ta, — na,

deg (ta. —ha)=max {n=1-=dega+deg a,, n—deg g, +degal=n

ALGORITHMS FOR ALGEBRAIC PROBLEMS B05

Since deg f = n, we conclude that s.f — st =0. By induction on k one easily sees that
il -y — teSk—y = (—1)*

for 1=k = [, hence in particular ged (5.,) = 1. This together with 5,1 = sr, # 0 implies
that there exists be F[x] such that

t = bi,,
Then also
s=bs, a=ba, 0=degh,
n>deg a+degt=2degb+deg a,+deg i,
=2deg b+dega, +n—dega,_,,
2deg a=2deg b +2 deg a,

<deg a,_, —deg a, +2 deg a, = deg a,_, +deg a,. a

Remark. If @ =0 then the statement of Lemma 2.2 becomes valid by introducing
the following (natural) notation: a,,,=0, 5., =5_, — i By = -y — quf. We have to
allow k=I+1 in (i), and interpret arithmetic expressions involving deg @ =—w@
“correctly.”

The theory of subresultants (Collins [1967], Brown-Traub [1971]) provided an
important development for sequential algorithms computing ged's of polynomials (or,
more generally, for the entries of the extended Euclidean scheme). Euclid’s algorithm
for the ged can suffer from exponential intermediate expression swell if the coefficients
of the polynomials are integers or polynomials themselves (Brown [1971]). The
subresultant algorithms avoid this difficulty—which makes the algorithm decidedly
impractical—by translating the problem into systems of linear equations. For parallel
algorithms, this strategy of employing linear equations was successfully exploited for
the ged in Borodin—von zur Gathen-Hoperoft [1982], and here we use it to compute
all entries of the extended Euclidean scheme.

We first give a self-contained exposition of the relevant results about subresultants.
For this simplified version with Lemma 2.2 as the cornerstone we only have to introduce
the “principal subresultants™ as follows.

We write f=fx"+ -+ f, g=g,x "+« -+ g, with 0= m=n and fugm #0. For
O0=i=m we consider the (n+m—2i)*%(n+m—2i)-submatrix P. of the Sylvester
matrix of {f, g) which consists of the first m—i columns of fi's and the first n—1i
columns of g,'s:

ifii} b Em
,IIFH-I fn Bwi=1 .Eru

P=|; "R i £ sals
_{rr B] P _PI‘L |_gm—n+r+| o Er_ﬂ
I_.-rzl—-'ﬂ'l'l i fr Ezi—as " B

Thus P is the Sylvester matrix of (f, g), and det (P,) their resultant. One might call
F, a “principal subresultant™ since its rows are the highest among the matrices for
subresultants of the same size. We denote by c, the leading coefficient of a,.

206 JOACHIM YON ZUR GATHEM

Tueorem 2.3. Using the above notation, we have for all i, 1 =i=m:
(1) Jke{l,---.l}dega,=i < det (F;)#0.
(ii) If dega.=iand yo,* * * s ¥m-i-1s Z0:* * * + Zn—i—) € F are such thar

- —

_}'ln —i—1 0
Pt g Fo e
: Zp—i-1 p
-]
Zp 1

then _
Sﬁ.=ﬂk{}‘n| 1 L-Im_r_l+. 3 I'-|".IFI|.'|:I1

e = Col Zamymy X" T o 2g)

Proof. Let &=(0,---,0,1)eF™" % and for any ¥o- -, Ym—i-ts Zos"" ",
.E'"._j_|'E.F let
$=}’m-i-]xm_i-l+‘ ' '+J'rI:I1

b=z X" T 2,

where 1 =i= m. By abuse of notation, we write FPi(s, 1) = ¢ for the system of linear
equations as in (ii). Obviously for any i, 1=i=m, we have

det (;) # 0% P;(s, 1] = e; has exactly one solution
&»there exist unique s, t € F{x]suchthatdeg s<<m — i, deg t<<n—1
and sf + tg 1s a monic of degree L

Using Lemma 2.2, we will show that the latter condition is satisfied iff there exists
ke{l,---, 1} such that deg a, = i Note that for any i with deg a;<.i= m there exists
ke{l,---, 1} such that deg a, =i <deg a,_,;. We distinguish four cases.

Case 1. 3ke {1, -+, I} such that deg a, =i Setting s=c}'s,, t=c;'t, we see
that sf+ g is monic of degree i It follows from Lemma 2.2 that s, t are uniquely
determined. This proves (i) in this case, and also the statement (ii).

Case 2. 3ke{l,---, 1} such that deg a, <i<(deg a; +deg a,_,)/2. For any be
Flx] of degree i —deg a; and with leading coefficient ¢i', set

s(b)=bs, t(b)=bt, alb)=ba,.

Then deg (s(b)) <m—i deg (t(h))<n—i and a(b)=s(b)f+t(b)g is monic of degree
i. Since there exists more than one such b, (i) is proven in this case.

Case 3. 3ke{l,---.,1} such that (dega,+dega,_,)/2=i<dega,_,. Assume
that deg s<m=—1i, degt<n—i and a = sf +1g has degree i From Lemma 2.2, we get
i <(deg a, +deg a,—,)/2. Hence no such s, ¢ exist, and (i) is proven in this case.

Case 4. i<dega, No s 1 satisfy the condition, since no nonzero polynomial of
degree less than deg a;=deg (ged (f, g)) is a linear combination of f and g. (This can
be interpreted as Case 3 with k=1+1.) 0O

We can now state the parallel algorithm that computes all entries of the extended
Euclidean scheme of two polynomials.

ALgoriTHM EUCLID.

Input: The coefficients of f, ge F[x] with degg=m=n=deg f

Output: The coefficients of polynomials Ax, Q@ S, Ty for 1=Ek=1 which are
the entries of the extended Euclidean scheme of (f, g).

ALGORITHMS FOR ALGEBRAIC FROBLEMS 807

1. Forall i, 0= i = m, compute p; = det (P;), where P, is the ith principal subresul-
tant as abowve.

2. Set

{ny, - m}={i: 0=i=mand p,# 0}

with m=n; = ny=+ - = n; (e will be deg ay.)
3. Forall k, 1=k=1/ and i = n, compute Yo, * *, Ym=i=1s 202 * * * » Zn-i-1 € F such

that . i gy
Fm:u—t ['
H x ¥o —
Tnei=1 L
: 0
[inzn | e L]

{This is a nonsingular system of linear equations and has a unique solution.) Set
M= Ymoica X" Fe o g

U =Ty X i -+ 2,
W = i f + ug

{ by Uy Wy will be scalar multiples of s, #, @y In steps 4 and 5 we compute
these scalar factors.)

4. For all k, 2=k = [, compute d,, r. € F[x] such that

Wi—2 = Fy—1 Wi— + di,

deg d, <deg wy_;.

(Dividing wy_> by wy_; with remainder. Use w,=f)
5. For all k, 1=k = [, compute the following.

&, =leading coefficient of d,,

i {ﬁkﬁ.‘_; oo By if k ?s even,

8.8, _2---8; if kisodd,

Ay = e, W,

Q= (Ag—y = Apsr)f Asy

S = ey,

T, = ep vy,

(with &, = leading coefficient of g, and A, =0.)

TueoreM 2.4. Over any field, algorithm EUCLID computes the entries of the
extended Euclidean scheme of (f, g). If deg g =deg f = n, then it can be performed in
parallel time O(log® n).

Proof. By Borodin—von zur Gathen—Hopcroft [1982] steps 1 and 3 can be per-
formed in parallel time O(log® n). Using Lemma 2.1 for step 4 and the division in step

5, the timing estimate is clear. The proof of correctness below shows that the division
in step 5 is exact.

B8 IOACHIM VON ZUR GATHEN

It follows from Theorem 2.3(i) that
#{i:0=i=m and p; # 0} = [= length of Euclidean scheme,
(A, - - m)=(degay,---,degay),
and from Theorem 2.3(ii) that
Sy = Cplly, B = Cply, Oy = CpWy,
for 1=k =1, where ¢ is the leading coefficient of a.. From
(Cx—ale—1)We—y + Ceady = Co_aWi 2= i
= By— T dp = {"-"k—ﬂ?k—l}wt—l + Wiy
deg (cp_»dy) < deg wy_,
deg (cow,) <deg wy_y,
and the uniqueness of division with remainder we conclude that
Eﬁ:—ldk = O Wi
Since w, is monic, we obtain
l:'_l.:_zﬂj.: = Cis
By induction on k it follows that ¢, = e, and a, = A,.. We also conclude that g, = Q.
s=85.4=T,. U
Remark 2.5. Let us describe in some more detail how the branching in step 2
can be implemented on a PACDAG. Given the sequence py, - -+, Py, We Want to store
in variables g; (0= k=1, je{l,- - -, n}*) the matrices P, where P; is P; extended by
1's on the diagonal to an n X n-matrix, such that O, =P, for 1=k =1
Using a binary splitting (starting with all values 0=u=v=m and ending with
u=10, v=m), we compute larger and larger intervals [u,---, v] such that if s=
wliiu=i=vandp #0}—1, then Q.- -, O.., are the P; with p; # 0 in the original
order, and Q, 4,41, * *, 2, =0. Let g, be p, for the i corresponding to k.
Given two such intervals [u, - -+, v] and [v+1, - - -, w], we first branch in depth

O(log n) according to the value of 5, u = 5 = v,such that g, # 0and g,,, =0 (or (s=u—1
and ¢, =0) or (5= v and g, #0)), and similarly for t, v<t= w. Then set

2, fu=k=s,
=< My, ifs<kSs+i—u,
0 fs+r—v=k=w

Remark 2.6. As mentioned above, the entries of the Euclidean scheme of integer
polynomials may be very large. However, the u;, g, w, computed in the algorithm
will have reasonably small coefficients (with binary length polynomial in the input
length, by Edmonds [1967]). Hence, as long as one wants ay, gi, 5. f only up to a
scalar multiple, steps 1, 2, 3 provide a solution with small coefficients (using the scalar
multiple (wy_, = . wioi)/ we of g,). This is quite satisfactory for all practical purposes.
Only if we want to compute the entries of the extended Euclidean scheme exactly,
then we have to perform steps 4 and 5 and may be faced with very large integers. A
similar observation applies to multivariate polynomials

Remark 2.7. Algorithm EUCLID can be considered as an “NC'-reduction” (i.e.
one using only operations of parallel time O(log n)) from the problem of computing

ALGORITHMS FOR ALGEBRAIC PROBLEMS 209

the extended Euclidean scheme to that of computing the determinant of matrices. In
fact, all the algorithms of this paper can be considered as (probabilistic) NC'-reductions
to the determinant problem. {We have to assume that the field is fixed; see § 4 for a
discussion of finite fields described in the input.) In later sections, algorithms will make
use of the rank of matrices. The rank problem itself is NC'-reducible to the determinant
computation—probabilistically in general, and deterministically over any real field, in
particular over Q or R. Thus over Q, all reductions are deterministic, but over an
arbitrary ground field they are probabilistic.

Remark 2.8. If F is Q or a finite field, then we can consider the input as represented
by bit strings, and ask for Boolean circuits, say, that compute the functions considered
here in small depth and polynomial size. A basic result is that the determinant function
is in Boolean NC? (Csanky [1976], Borodin—-Cook-Pippenger [1983]). It follows from
Remark 2.7 that all the computational problems considered in this paper are in NC?
(again, provided that the ground field is fixed).

3. Ged and Iem of many polynomials. In § 5 below, we want to compute the
squarefree decomposition of polynomials. It turns out that we first have to present an
ancillary result, which may be of independent interest: how to compute the ged of
many polynomials in parallel. Thanks go to Steve Cook for pointing out the algorithm
below. We also need the least common multiple lem of many polynomials, and give
an algorithm for this problem.

Let F be an arbitrary field, f,,- - -, f, € F[x] have degree at most n, and g =
ged (fy, 0 -+, fu). We want to compute g from fia- =+ fo It is easy to see that there
exist 5y, -+, 5, € F[x] such that ¥ 5f; =g We claim that in addition one can have
deg 5, < n. To prove this claim, reorder the polynomials such that deg f, = deg f; for
all i. For each i =2, divide s, by f, with remainder: s, = g,f, + §, and deg 5 < deg f, = n.
Set &, =5+ =2 qfi Then ¥ 52, 5ifi =g, and § f, = g — ¥z 5 has degree less than
n+deg f,. Hence deg 5, < n for all i, and the ¢laim is proven.

Now let

d=min {deg f: 35,,-++, 5, € Flx]degs,<nforall fand f=¥ 5 f; #= 0},

Then d = deg g, by the claim above. We can now set up systems A, of linear equations
for 0=k = n, where A, expresses “Y s,f, is monic of degree k. We write

fim SE S fpen, A g R

ETET, 0 j=n
and A, consists of the linear equations
0 fork<1[1=<2n,
1-.EE|-.in Sufui-s _{ 1 forl=k
D=jsl

in the indeterminates s; (Write zero whenever a subscript is out of range.) Thus A,
has 2n — k equations in at most n” variables. From the above we know that A, has a
solution iff k= d. In particular, A, has a solution, and from a solution of A, we can
easily compute g.

ArcoriTHM GCD OF MANY POLYNOMIALS.

Input: a number neN, and f;, - - -, f, € F[x] with deg f, = n for all i,

Output: either g=ged (f;,- - -, f,) or “failure.”

1. For all k, 0= k = n, determine whether A, has a solution, and if it has, com pute
a solution (s;(k)) of A,. (Using a Las Vegas algorithm in general, but a
deterministic algorithm if F is real.)

810 I0ACHIM VON ZUR GATHEN

2. Set d =min {k: A, has a solution}.
3. Remmg= ¥ s,(d}x'f;

I1=izn,
0 i< r

Tueorem 3.1. Algorithm GCD OF MANY POLYNOMIALS either returns the
ged g of the input polynomials, or it reports * failure.” The latter happens with probability
less than 277, If F is real, then the algorithm can be performed deterministically. The
parallel time for the algorithm is O{log® n).

Proof. From the discussion above it is clear that the algorithm correctly computes
the {monic) ged of the input polynomials. Steps 2 and 3 can be performed (deterministi-
cally) in parallel time Qilog n). In step 1 we apply the Las Vegas algorithm of
Borodin-von zur Gathen—Hoperoft [1982, Thm. 5(ii)]. This algorithm "-?r'Dl'lliE- in parallel
time O(log” n). The coefficient matrix of Aj is considered to be of size n*xn”, and
the failure probability for each k is at most 27 "*. Thus the total failure probability in
step 1 is not greater than (n+1)27" <27",

If F is real, then we can use the deterministic version of the parallel algorithm [or
solving singular systems of linear equations. 0O

We have used n as a separate input rather than read it off the input polynomals
in order to ensure failure probability less than 2 ° in applications where we do not
know the exact degree of the input polynomials. We remark that by computing ged's
of pairs of polynomials along a binary tree, and using the algorithm from Borodin—von
zur Gathen-Hoperoft [1982, Thm. 2], we get a deterministic algorithm for
ged (fy,+ - -, fu) over an arbitrary field running in parallel time O(log” n).

For two polynomials f;, f5€ Fx] the relation ged (f, f3) - lem (f;,) = £, f holds,
and both the ged and lem can be computed in parallel time O(log® n). For more than

two input polynomials, one does not have such a simple relationship between ged and
lem.

AvrcoritTiM LCM OF MANY POLYNOMIALS,

Input: A number n &N, and polynomials fi, - - -, f,, € F[x] of degree at most n.

Output: Either the monic least common multiple g =lem (fy, - - -, fi,), or “failure.”

1. Set d;=deg fi, m=max, gz, d, 5=%,_.., d;, and replace each f; by its monic
multiple f;/(leading coefficient of f,).

2. Forall k, m = k = 5, do the following. Let B, be the system of (inhomogeneous)
linear equations that expresses

Lifi=tafe=wfa—uafa=- = u, o = f =

Here each ;=¥ .., W' is a monic polynomial of degree k — d,, and hence
B, consists of (n—1)k& linear equations in the ¥ (k —d;) = nk — 5 indeterminate
coefficients u; (1=i=n,0=j<k—4d,) of the i;'s. (Note that (n—1)k=nk—-
5.) Determine whether "By has a solution, and compute a solution il k), if it
exists. (This can be done deterministically over a real field, and probabilistically
in general.)

3. Set d =min {k: B, has a solution}.

4. Set u=Y%,., 4 4 Wi{d)x’+x""", and return g = uf,.

THEorREM 3.2, Algorithm LCM OF MANY POLYNOMIALS either returns the
lem of the input polynomials, or it reports **failure.” The latter happens with probability
less than 277, If F is real, then the algorithm can be performed deterministically. The
algorithm runs in parallel time O(log® n).

ALGORITHMS FOR ALGEBRAIC PROBLEMS 811

We remark that over an arbitrary field the lem can be computed deterministically
in parallel time O(log” n) along a binary tree,

4. Factoring polynomials over finite fields. The parallel complexity of the factoriz-
ation of polynomials over finite fields was the original motivation for the work begun
in Borodin-von zur Gathen-Hopcroft [1982]. We present here the Cantor-Zassenhaus
[1981] probabilistic algorithm (some of whose ingredients go back to Berlekamp
[1970]; see also Knuth [1981, 4.6.2]) with the appropriate modifications for parallel
execution. 5o let F be a finite field with g elements, and f & F[x] monic with degree
n=2. We want to factor f

In order to get a better timing estimate in case g is not prime, we let G = F be
another field with p elements, and ge G[t] irreducible of degree d such that F =
G[t]/(g) and g =p“. (For any field F, one can of course choose G = F and p=q) F
15 & vector space over (with basis 1, ¢,-+-, ¢! and R = F[x]/(f) is a vector space

over F with basis 1, x, x%, -+, x" and a dn-dimensional vector space over (G with
basis {i'x": 0=i<d,0=j<n}.

ALcorITHM FACTORIZATION OVER A FINITE FIELD.

Input: A polynomial fe F[x] of degree n.

Output: Either the complete factorization of f, or “failure.”

1. Frobenius matrix. Replace f by its (unique) monic scalar multiple. Compute
the matrix Q of the linear mapping R = R with uw 1. (This is called the
Frobenius mapping if p is prime.)

2. Nullspace. Compute the dimension r of the nullspace K of Q—1I, and
E1.***, € F[x] of degree less than n such that g, modf,---, g, maod f form

a basis for K. If r=1, set §={f} and go to step 5. (r is the number of distinct
irreducible monic factors of f)

3. Random nullspace elements. Let m =[5 log, r], choose ty€G for 1Si=m,
1= j=rindependently at random, and let b, =¥, _ _ w,g;€ F[x]for 1=i=m.

4. Primary factorization. For 1=i= m compute ¢, =ged (f, h{* 2= 1)e F[x]. If
pis even, say p=2*% uge ¢, = ged (fi X osicx hi. Compute the common refine-
ment of these partial factorizations as follows. Let M ={0,1}x{1,+- -, m}
For all [= M compute

5 =ged ({::,:{IL i)e I}U[F’i:{l, :'}EI]).

Then compute the following set T of **minimal I's:”
T={I=sM:5#1and¥J=M IcJ=s5=10rs =5}

(Note that f= JJ=>5|5.) T can be computed by comparing each pair (s, 5,)
with I =.J and marking s; as “irrelevant™ if (s, =1 or (s, # 1 and 5 # 5;)).
Then fan in to keep only those I for which 5, has never been marked
“irrelevant.” Set 5 = {s;: I e T}. (This eliminates duplicate occurences of 5 =4
with I'# J. We expect S to contain all “primary” factors of f, i.e. all g° where
g 1s an irreducible factor of f and e its multiplicity in f)

5. Complete factorization, If + 5 = r, then return “‘failure”. Otherwise, for each
a € 5 do the following. Set b=a. While b'=db/dx =0, replace b =¥, b.x"
by its pyth root Yoo, bfiTox", where p,=char F is a prime number. If #'=0,
compute g=b/ged (b, b'). Now g is an irreducible factor of f and e=
deg a/deg g its multiplicity.

6. Return the set of all (g, €) computed above as the complete factorizaton of f

812 JOACHIM YVON ZUR GATHEM

THEorEM 4.1, Algorithm FACTORIZATION OVER A FINITE FIELD, applied
to a polynomial of degree n over a finite field with q elements, either returns the complete
factorization of the polynomial or reports “failure.” The probability of the second case
is at most 3. The parallel time is O(log” nlog q) operations in F. If f is squarefree, G= F
a subfield with p elements and q=p°, then the cost is Oflog® nlog® (d+1)log p)
operations in G. The number of processors is polynomial in n log q.

Proof. We start by proving the first estimate for the parallel time of the algorithm.
So we count operations in F, and consider the matrix Q as an n X n-matrix over F.
Step 1 takes Olog® n log p) and step 2 O(log® n) operations using Lemma 2.1 and
the fast parallel algorithm for nullspace from Borodin-von zur Gathen—Hopcroft
[1982]. The nullspace algorithm is probabilistic and has a probability of failure at most
)

'[‘?1& cost for step 3 is O{log r). (Note that r = n.) In step 4, each ¢; can be computed
with O(log® n log p) operations. For each 5, we apply GCD OF MANY POLY-
NOMIALS eight times in parallel, with the same number n and using parallel time
Of(log® n). Unless all these applications fail, we take any of the answers. (They will
all agree.) Note that card 2™ =2°" = 2" %" = ¢!2 = 12 Thus T and S can be computed
in parallel time Of(logn). Finally, each g in step 5 can be computed in time
O(log, nlog g+log” nlog p). Thus the total parallel time is O(log® r log g).

For the second estimate of the parallel time, simply note that one operation in F
can be simulated by operations in G in parallel time O(log® (d+1)). (We write d+1
rather than d in order not to get 0 for d=1.) Since now all elements of R are
represented by coefficients from &, we consider O as a dn X dn-matrix over G, The
computation of g in step 5 is unnecessary, since f is assumed to be squarefree. We
thus get the estimate O(log® n log” (d+1) log p).

For the proof of correctness, let us recapitulate the overall strategy of the algorithm.
In steps 1, 2, 3 we compute hy, - - -, h,. € F[x] such that

= by = (P2 1) (R4 by

{(if p is odd). Thus each h, provides a partial factorization f=¢;-f/c. In step 4 we
compute the common refinement of these partial factorizations, and then step 5
accounts for the possible presence of multiple factors. Unless all distinet irreducible
factors have been correctly separated in step 4, the procedure will report “failure.”™

We will show below that the number r from step 2 is the number of distinct
irreducible monic factors of f. Then it is clear that the algorithm either reports “failure’
at some stage or correctly computes the complete factorization of f All that remains
to do is to estimate the probabilities of failure p;, py, ps in steps 2, 4 and 5. We have
pe=2"=1 and py,=n'*2 7=}

In order to estimate ps, let f = fi1 - - - fir be the complete factorization of f, where
fi.* * . [, are pairwise distinct irreducible monic polynomials and e, - - -, e,=1. Let

R'=FxV/(fi)x- - - X F[x)/ (%),
K'={{u, ,u)eR"u, ,u,e G}

K' is the linear space over G of “locally constant polynomials,” i.e. those that are
constant (€ G) modulo each f;'. We denote by a: R+ R’ the isomorphism of the
Chinese remainder theorem, and by A the image of he F[x]in R. We first prove that
alK)=K'. Let he F[x] with he K={gcR:g"—¢g=0}, and alh)=(u,, -, u,).
Since A” — =0 in R, we have

fIRF—h= 1 (h—w).

we il

ALGORITHMS FOR ALGEBRAIC PROBLEMS 813

These factors are pairwise relatively prime, and it follows that

Vi=sIwe G fiilh=—w,.

Then #;=w € G. Hence «(h)c K'. The reverse inclusion is clear, and a(K)=K"'
follows. In particular, r= 5, and f is a power of an irreducible polynomial iff r= 1. For
the remainder of the proof we can assume that r= 2.

We first consider the case where pisodd. For 1=i<j=rand he F[x] with hc K
we say that h separates f; and f; iff exactly one of f7 and f divides h'"~"*— 1, Writing
a(h)=(u;,- - -, u), this is equivalent to the condition that exactly one of w; and
satisfies u'P""*—1=0. The number of pairs (u; ;) € G* satisfying this condition is

A P el Bl S
e (i)

imd thl_ls thti probability that a randomly chosen A e K does not separate f and fi is
3(1+p~*)=§. The probability that f; and f; get separated by none of the randomly
chosen hy, - -, h, is =()™, and the probability that some pair of factors does not get

separated is
m X ag F
2/\9 2\0 b 8 B

Thus the total probability of failure is =p,+p,+ p: =4, and Theorem 4.1 is proven
for odd characteristic.

If p=2" is even, the argument applies with the following modifications: h separates
fi and f; iff Exactl;.' one of fi' and i divides i hE iff exactly one of w, and y;
satisfies ¥, 4* =0. The latter polynomial has exactly 2~' zeros in G, and the
number of pairs (i i;) that satisfy the above condition is 2**~', The probability that
h does not separate f; and f| is 3. As above, it follows that the probability of failure
is at most &. O

Of course, we can execute n instances (say) of the algorithm in parallel and obtain
failure probability at most 277, with the timing estimate of Theorem 4.1 remaining
true. In von zur Gathen—Kaltofen [1983], a fast parallel algorithm for factoring a
multivariate polynomial f < F[x;, - -, x,] is presented, where F is finite and f is given
in a dense encoding.

In our model it would be natural to consider F as fixed, and then we have an
Oflog” n) algorithm. However, for the factoring problem it is important to consider
the field F not as fixed but as somehow described in the input. We might think of the
input as consisting of a prime number p, an irreducible polynomial g € Z_[1] of degree
d such that g=p” and F=Z[t)/(g), and fe F[x], all represented by numbers in
binary notation. Then we want dn algorithm whose parallel time is polynomial in
log (input size), i.e. polynomial in log log g and log n. Unfortunately, the version with
{ =F of our algorithm falls far short from this goal, with its running time depending
on log g rather than log log 4. A corresponding unpleasant phenomenon occurs with
the sequential deterministic algorithms using time Ofg) rather than O{log g), and the
sequential probabilistic methods avoiding this do not translate into a fast parallel
algorithm.

The stumbling block is the computation of powers of polynomials modulo f in
steps 1 and 4. A related problem — which occurs in step 5 — is the modular computation
of powers of numbers: given integers a, n, p compute a” mod p. The “repeated

B14 JOACHIM VON ZUR GATHEM

squaring” method for computing 2" mod p does not make efficient use of parallelism.
In particular, even with arbitrarily many processors it is not clear how to obtain parallel
running time polynomial in log log n.

Open question 4.1. Is the above problem of computing powers in finite fields in NC?

For nonprime fields with # F=g=p" the second version above goes a step in
the right direction, essentially replacing log g by log® d log p. Asan application, consider
the algebraic BCH codes, where one wants to factor polynomials over large finite fields
of characteristic 2; the parallel time of our algorithm is indeed polynomial in log (input
size) for this problem. In particular, if we want to factor polynomials of degree n over
(GF(2™), then our Las Vegas algorithm provides an O(log* n) solution.

It seems to be a fundamental question what one can say about factors of poly-
nomials over finite fields with the parallel time depending polynomially on log log (field
size), Obviously a composite polynomial has a certificate (namely, a factorization) that
can be verified in parallel time O(log n log log g). Also an irreducible polynomial f
has such a certificate: for each i<n=degf, give g € F[x] with x*= g mod f and
deg g; < n. The first condition can be certified by a sequence of intermediate results in
a computation for x¥ mod £ From the coefficients of the g’s one can verify that the
rank of {fix points of the Frobenius mapping} is n—1, thus proving irreducibility of f
(This is a special case of the general observation that problems in the Boolean
class NP seem to be computable by log n-depth polynomial-size nondeterministic
circuits.)

Open question 4.2. Are the irreducible polynomials and the factoring problem,
both over finite fields, in NC?

In the sequential analogue of this situation, step 1 and a test “r=17" in step 2
of the above algorithm provide a polynomial-time deterministic irreducibility test for
polynomials over finite fields, going back to Berlekamp [1967]. The parallel time for
this algorithm is O(log® nd log p).

The recent breakthrough by Lenstra—Lenstra-Lovisz [1982] provides a poly-
nomial-time factorization procedure for univariate integer polynomials; it has been
extended by Kaltofen [1982] to multivariate integer polynomials. A basic subroutine
is to compute short vectors in integer lattices. From the point of view of this paper,
it remains to adapt these algorithms to the parallel setting. In § 7 we will see that they
give rise to reductions to the problem of finding short vectors;, however, we do not
have a good parallel algorithm for the latter problem.

5. Squarefree decomposition. Let F be an arbitrary field and f e Flx]. f is called
squarefree if there does not exist an h € F[x]\F such that h* divides f. Let ¢ be the
leading coefficient of f, and g =(g,.-**, g) be a sequence of monic squarefree poly-
nomials from F[x] with g # 1. We call g the monotone squarefree decomposition of
fif f=cgg: g and g, divides g, for 1 =i <t This decomposition is unique, and
g, is called the “squarefree part” of £ We call g the distinct power decomposition of
fif f=cg,g3 g and ged (g, g) =1 for 1 =i< j=t This decomposition is unique,
too. The next two lemmas show that these two decompositions are closely related,
and how to compute the decomposition of a product from the decompositions of the
factors,

Lemma 5.1. If (g, ---,g) is the monotone squarefree decomposition and
(hy,+ =+, h,) the distinct power decomposition of f, then s=1, by =g/ g, (with g, =1)
and g =hhi, -+ h, for 1=i=t In particular, one decomposition can be computed
from the other in parallel time O{log® n). O

ALGORITHMS FOR ALGEBRAIC PROBLEMS g15

Lemma 5.2, Let [f]'vl"!fr:l arnd {El;""gg;} be the monotone Sqmrefree
decompositions of f, ge F[x]. Forj. k=0, 1S i=r+5 set

My =E‘:d ﬂ":m ':.IFF' g.f:ls E':d {Jri.'! gt:l}r
hi =lem ({u: 0=}, kandi=j+k}),
t =max {i: h =1}

(withfi=1forj>r,g. =1 fork=>s, and f,= g, = fg). Then (hy,- - -, h,) is the monotone
squarefree decomposition of fe.

Proof. Each uy with (j, k) # (0,0) is squarefree, hence also each . Also Ry i i0|
Let a e F[x] be irreducible, p, g the multiplicities of a in f; g, respectively. Thus, e.g,
a|f; iff j = p. It is sufficient to show that a|hyqand ath, . .,. We can assume that pP=aq,
and then allem (£, g;) and a|ged (f,, g,). Hence a| u,,, and a| h, .. If k= g, then atgcd
(fx» 8i). Hence if j+ k> p +g, then a} ui- It follows that ath,,..,. O

Algorithms for computing the squarefree decomposition are of interest since they
may yield an (incomplete) factorization with little effort, and since most factorization
algorithms over Q and finite fields require squarefree polynomials as inputs (not,
however, the first version of the algorithm of the previous section). Recall that one
loop of the standard sequential squarefree factoring algorithms computes the squarefree
part f/ged (f, f') of f and passes ged (f, f') to the next loop (see Knuth [1981, 4.6.2]).
For a parallel algorithm over a field of characteristic zero, we use the following
approach.

ALcoriTHM SOUAREFREE.
Input: A number n€ N, and a polynomial fe F[x] of degree at most n, where F
is a field of characteristic zero.
Output: either the monotone squarefree decomposition g=(g,---.g)of f or
“failure.”
1. Forall i j1=i<j=n,input [, . keF
2. For all i, 0=i= n, compute
L 5
My = fvb.'i 1
vy =gcd I:J"!I.'.I:I A e)
&=t /o (foriz=1).

3. dett=max{i:1=i=nandg #1}.
4. Return g=(g,,- - - . &)

THeOREM 5.3. Algorithm SQUAREFREE either computes the monotone square-
free decomposition of the input polynomial, or reports “failure.”” The probability of the
second case is less than 27", The algorithm runs in parallel time O(log® n). If the field
is real, then the algorithm can be performed deterministically.

Proof. We first prove the bounds on the running time and failure probability, and
then correctness. In step 2, we apply for each i=1 algorithm GCD OF MANY
POLYNOMIALS twice to compute v, using the same number n as degree bound.
The parallel time is O(log* n). SQUAREFREE reports “failure,” if for some i both
applications fail. (If neither fails, they will return the same value for v.) The total
failure probability is at most n27*" < 27",

For the proof of correctness, we can assume that f is monic, and let f=f& -« f&
be the factorization of f, where f,,---,f, are pairwise distinct irreducible monic

R16 JOACHTM VON ZUR GATHEN
polynomials, and e,,- -+, e, = 1. Fix some k=r, and let

a=i 1L T 3 K

ey — I im0y l&raar
Jek

Then fi. 4 a,, and it is easy to see by induction on i that
i [T o

for 0=i=e, It follows that the multiplicity of f, in &, and @ is exacily e, —i for
0=i=e. and in g exactly 1 for 1=i=¢, and) for i e, Henve g=(gy." ", 8} I8
the monotene squarefree decomposition of 2 0

Again, [or an arbitrary ficld of characteristic zern, the algorithun can be performed
deterministically in parallel time Oflog® u).

6. Squarefree decomposition over finite fields. Let I be a field with g elements,
p =char F, g = p* and f € F[x] of degrec at most n. We want to compute the squarefrees
decaomposition of £ If our poal arc log® (input size)-algorithms and = p are both
large. then a hard case is an innocent-looking polynomial like f = £ —a. We only know
how to compute b =a¥* {so that f=(x—#") in parallel time Clog (g/p)) which,
just as in § 4, is in general not polynomial in log (input size) (see Open Question 4.1).
For the estimates below, we let T be an upper bound on the parallel fime to compute
af. a P ... a"for acF. Thus Te= Olog (g/p)). The alporithms of this section can
be considered as reductions to this powering problem and systems of linear equarions.

We first present an adaptation, called SQUAREFREE VIA DERIVATIVES, of
the algorithm of § 5, which works for polynomials over s fimite ficld. The only
complication that requires some cxtra care is that de./ de may be zero without o, being
constant. We will then have to compute b =(t,)" " at parallel cost O(log (g/p)) and
restart the algorithm with input /. Since this situation may occur several times consecn-
tively, we only get O{{log® n+log (g/ p)) log, n) as cstimate for the parallel time. We
then describe a second algarithm, SOUAREFREE VIA TAYLOR COEFFICIENTS,
thut avoids this factor log, a

We thus have four parallel Las Vegas algonthms A, A, A A, o compute the
squarefree factorization. A, 1% the [actoring algorithm of 84 with G=F A; 15 the
sceond version of that factoring algonthm, with O =Z , and step 5 of A, executed on
the primary factors. A, and A, are SQUAREFREE V1A DERIVATIVES and
SQUAREFREE VIA TAYLOR COEFFICIENTS, repectively. The parallel comput-
ing times are as follows:

TiA, = D{]ﬂg‘? nlog g7,

T{A) = Olog® alog” (d+1) log p+ TF),
T{A4) = O((log® n+ T} log,),
T{A = O(log" n+ TF).

Thus, A4 has the best uniform timing estimate among these algorithms, comparing
particolarly well with A, if p is small, and with A, and A, if F=Z, for large p. (Of
course, A, and A, provide much more information than A; or A, do.)

A somewhat surprising example is provided by polynomials of the form x°—a e
Flx], where # F=2"; then T, seems to be {}(n3, and all four algonthms use parallel
time {}(m). Therefore we have the counterintultive consequence that “‘sguareiree
decomposition™ can be harder in parallel than “factoring sguarefree polynomials™

ALGORITHMS FOR ALGERRAIC PROBLEMS 217

over finite fields, while in characteristic zero, the first problem is always easy and the
second one not even known to be in NC.

Avcorimiy SQUAREFREE VIA DERIVATIVES.
Input: A number neN, and f € F[x] of degree at most n, where F is a finite field
of characteristic p.

Output: Either the monotone squarefree decomposition g of f, or “failure.”

1, 2, 3. Execute steps 1, 2, 3 of algorithm SQUAREFREE.

4. If v;#0, then return g={(g;, - -, g). If v{=0, then compute h e F[x] such
that ¢, = k", (Note that such an h exists.)

5. Call SQOUAREFREE VIA DERIVATIVES recursively with input ([»n/p], k)
to obtain the monotone squarefree decomposition (hy, - - -, h;) of h.

6. Use Lemma 5.2 to merge the two monotone squarefree decompositions
(Z1s- &) of F/R" and (hy, - By "y he -, k) of h® (with each A,
written p times), and return the monotone squarefree decomposition of f

We say that a polynomial fe F[x] is p-power-free if there does not exist an
he F[x]\F such that k¥ divides f Thus 2-power-free is the same as squarefree.

THeOREM 6.1. Let F be a finite field with g elements and char F = p, and f € F[x]
of degree at most n. Algorithm SQUAREFREE VIA DERIVATIVES either returns
the monotone squarefree decomposition of f, or reports * failure.” The latter occurs with
probability less than 2°". The algorithm runs in parallel time D{l{ln:::g_2 n+
log (q/ p)} log, n). If f is p-power-free, then it runs in parallel time O(log” n). The number
of processors is palynomial in n.

Proof. We leave the proof to the reader. Observe that steps 2, 5 and 6 have to
be executed several times in parallel in order to get the estimate on the failure
probability. [

To highlight the difference between the two algorithms presented in this section,
let us first trace SQUAREFREE VIA DERIVATIVES on input x*+x"+x*+x"¢
E.i[x].

Step 2. up=x"+x"+x*+x?,
u,=x'£'+1:3,
u,=0for2=i=8§,
:.:-,:,=_ta+_t'?+_1:"+x3,
p=x"+x’forl=i=8§,

g1=x"+x,
g=lforl=i=8.

Step 3. 1=1.

Step 4. h=x"+x

Step 5. (hy, hs) =(x*+x, ¥ +1) by recursive application.

Step 6. Merge (x*+x) with (x*+x, x*+x, x+1, x+1) to get the output (x2+x,
¥4x x+x x+1, x+1).

We now want to discuss a different approach to squarefree decomposition. In
SQUAREFREE VIA DERIVATIVES, we compute pth roots from time to time, and
apply the procedure recursively. Algorithm SOUAREFEEE VIA TAYLOR COEF-
FICIENTS first computes the p-power-parts wy,---,w, of f where f=
wowtwE - - - w® and each w, is p-power-free. This approach avoids the factor log, n
in the parallel time.

518 JOACHIM VON ZUR GATHEM

For i, n =0 define {x")""'=(7)x""". Extending this by linearity, we get a mapping
M. F{x]- Fl{x). Thus d'f/dx'=i'f1, f™=F and eg (x®+x"+x*'+2x)=x"+xe
Z[x]. Clearly the f""s are more appropriate for computations than the derivatives,
since for any feZ[x], d° ,-"dxl and all further derivatives are zero and thus carry no
information at all. The f'"s are the “universal Taylor coefficients” of f, since from
them we get the Taylor expansion of f at an arbitrary point a as follows:

f= Y fYa)x-a)'
=i =mdeg F
ALcorRITHM SOUAREFEEE VIA TAYLOR COEFFICIENTS.

Input: A number n€N, and a polynomial f € F[x] of degree at most n, where F
is a finite field of characteristic p.

Qutput: Either the monotone squarefree decomposition (g, -
“failure".

1. Forall i, j, 0=j=i=n, input [],}EF'
2. For all i, 0=i= n, compute f,
3. Set [= Llﬂgp n)]. For all k, 0= k = [, compute

w,=ged (f19, ... g1y

. &) of f, or

O =

5
i

{(with u,,;=1. v, will be the * p -power-part of f in the following sense: v,

will divide f am:l be equal to wf for some wy, and for no irreducible factor v
of v, will o" " divide I

Wi = Uk'rph
:l"l::={:}'.l|:]:- Ly }'R.r.,:]:-

the monotone squarefree decomposition of wy, (Using steps 1, 2, 3 of algorithm
SOQUAREFREE. Note that w, is **p-power-free” and the complication men-
tioned at the beginning of this section does not turn up.)

4. For all i, 1=i=n, do the following. Consider the p-adic representation i=
in+iyp+---+ip' of i, where 0= i, < p. Compute

%= E{:d '-r.:FrI:I.in.r Fligs™ "7 s }'J.i;}m
(with y,,=1if j> 18, and y o= f for all k)
g =lem (2, Zivrs " " 4 24
5. Set r=max{i:g # 1} and return g=(g,," " - . &)
Before we analyse the algorithm, let us look at the example considered above.
With f=x"+x"+4x*+ " Z,[x] as input, SQUAREFREE VIA TAYLOR COEF-
FICIENTS produces the following:

Step 2. fl=x 4 xTh '+ x?, fPl=i3

j:[;1=:,:+:_|_i,l,z+ f[:J__,L
flm x5+ x, f=1,
= xt41, =1,

ALGORITHMS FOR ALGEBRAIC PROBLEMS 819

Step 3. Set =3, and

w,=x"+x"+x*+ 2%, = x34x,

By = v =x%

wa=xt+1, m=xt4l,

uy=], =1,

Wo =X+, Yo=(x*+ x},

W =4, ¥ =(xj,

wy=x+1, y:=(x+1]},

Wy =1, ya=(1).
Step 4. z,=x+x,

LT I3= X, Bi=g=g=x+x,

Zy=zs=x+1, ga=gs=x+1,
zﬁ=z'?‘__'-3#=11 Eﬁ=37=33=i.

Step 5. Return g =(x*+x, x*+x x*+x, x+1, x+1).

THEOREM 6.2. Let F be a finite field with q elements, p=char F, and f € F[x] of
degree n. With this input, algorithm SQUAREFREE VIA TAYLOR COEFFICIENTS
either returns the squarefree decomposition of f or it reports *failure”. The pmbc:b.rm v af
the second case is less than 27" The algorithm runs in pamﬂ'e!' time Oflog® n+

log= (q/p)). If f is p-power-free, then it runs in parallel time O(log® n). The number af
processors is polynomial in n.

Proof. We first describe the execution of the algorithm in some more detail,
simultaneously proving the time bound. Then we establish the bound on the failure
probability, and finally correctness.

Steps 1 and 2 can be performed in parallel time O(log n). In step 3, we apply
algorithm GCD OF MANY PDLYHDMIALS three times for each k to compute uji
Below we prove that t:‘k isa p“th power, and hence can be written as v, =} _, vx"
Then wy =X, of 77" x' can be computed in parallel time O(log (g/p)), where q"‘ -
p*=q", using O(n) processors. For y, we use steps 1, 2, 3 of SQUAREFREE,
applying it three times for each k. The algorithm runs in parallel time O(log® n). In step
4, for each i we apply GCD OF MANY POLYNOMIALS three times, and LCM OF
MANY POLYNOMIALS three times for each g. The nve:rall p:aruI!c:I time is
D[Ing n+log (g/p)), as claimed. If f is p-power free, then v,=---=g=1, and no
p*th roots with k=1 have to be computed.

Failure may occur only in the computation of u,, Y. 2z, and g. In every single
such computation, the failure probability is =27'" The total failure probability is at
most (21+2n)27" =427 " <27,

For the proof of correctness, we assume that f is monic and let f = hgh?hg - - hf'
be the *p-power-decomposifion™ of f, where each h; € F[x] is monic and p-power- -free.
This de:mmpm;mnn exists and is umque Fixsome kL, 0=k=1, and write r=hg - -+ hfo,,

s=hE" - h{ Then f= ST is p*-power-free, and s is a p*th power. We now show
that u, =5 For 0= t-::p we have

f=(ps)lil= § A0l igI0] o Ll

O=Zjizi
using Lemma 6. 3{|}| aEd (ii). Hence #y = s-ged (7L - - -, P, Lemma 6.3(v) im plies
that ged (7, - - -)y =1, and hence u, = 5 It fullnws that for all k we have v, = h{’

and w, = h..

20 JOACHIM VON ZUR GATHEMN

Now each vy, (with j= 1) is squarefree, hence also every z; and g; 1s squarefree.
Also g;., divides g. In order to show that g is the monotone squarefree decomposition
of f, we only have to prove that f=g, - - - g. So let a € F[x] be an irreducible monic
factor of f, and m its multiplicity in f (so that a™|f and a™ "% f). We have to show
that a divides g, iff i = m. Using the p-adic representation m =mg+m,p+---+ m,.p'
of m, where 0= m; < p, it follows from the above that a divides h, iff m, #0, More
precisely, a divides h, = w, exactly with multiplicity my, and hence

a |_'Fk".*=?j-§ M.

It follows that a divides z,,, and hence g... Then a also divides each of g,,- -+, Em, and
it is sufficient to prove that a does not divide g,,.,. But forany i = ip+ i,p+- - -+ip' = m
some p-adic coefficient i, is greater than m,, hence a does not divide y, ., and also
not z; or g. It follows that the multiplicity of a in g, - - - g, is exactly m, and hence
f=giluyags O

We remark that in our model the binomial coefficients computed in step 1 are
considered as constants in F, and hence are given for free. However, they can also be
computed in F, just using the constants 0 and 1 and field operations, either by computing
(x4 1) or by Lucas’ [1877] formula (see also Fine [1947]):

()= ()~ () moe

if i=i,+ip+---+ip' with 0= i, <p is given in p-adic representation, and similarly
for ;. Note that the definition via factorials may fail to give a computation in positive
characteristic.

In the following lemma we collect the facts concerning f''! that were used in the
preceding proof. It may be interesting to compare with the properties of the ith
derivative f'*'. Statements (ii) and (iii) are also true in that case, (iv) and (v) are false
in general, and (i) has to be replaced by the Leibniz rule

o=z ((Ypogen

LeEmma 6.3. Let F be a field of characteristic p= 0, f, ge F[x], and i=0. Then
D (fe) "= ou;mi 8"

(i) (fF) =0for0<j<p’

(i) Fl(f) for 0= j<i.

(iv) If fis irreducible and f*# 0, then ged (£ (=1, _

(v) If F is finite and f is p'-power-free, then ged (i, /11, . .- flem 1 =1,

Proof. (i) The case f = x™, g = x" follows from comparing coefficients of x"*™ ' in
+
E {fg}[r]= E (fl m)x.n-r.rr:—l'__'{l_"_xjn'm
hElEm+n FElEm4+n !
=(1+x)"(1+x)" =¥ (?f)x“‘f(’")x"“" =3, flngls],
LAY k ik

Since both sides are bilinear, (i) also follows for arbitrary f, g.

{ii) For f=ax" and 0= j<p" with a € F, (ii) follows from ("j"] = (). For general
f, (i) now follows from the additivity of the left-hand side.

(1ii) We use induction on i, the case i =0 or i =1 being tnvial. For i = 0 we wnte

(= (P T

ETET

ALGORITHMS FOR ALGEBRAIC PROBLEMS 821

using (i). By the induction hypothesis, f divides each summand with [<i—1, The only
summand that is possibly left is (f'~")\" 0 = (fi-1l 'f. which is also divisible by f
(iv) We use induction on i and write

& ={f|)[i] — Efr'—lﬂlij = ¥ l:fr'—l}[_.ljf[.i—j]r

LEF

Then f divides all summands except the one for f=i=1, and hence

ged (f By =ged (f, (f7) UAY = ped (£, f) =1,

(v) Assume that there exists an irreducible £€ F[x] such that g divides f1/ for
0=j<p" We show by induction on j for 0= j<p' that g™*'|f This vields the desired
contradiction for j=p'—1. The claim is clear for j=0. For j=1, we can write f = g'h
with some he F[x] by induction hypothesis. Then g divides =¥ _ _ (g0
and also by (iti) each summand with 0= < j. Hence g divides (g')'"h'®), and from (iv)
we conclude that g|h and g™'|f O

We remark that in (v) it is sufficient to assume F perfect, and in (iv) that F is
perfect and f squarefree. Without some such assumption, the conclusions may not
hold: If acF is not a pth power, then for f=x"""—gax and i=1 we have ged
[f[':']1fm1 . 24 ’f[p'—l]} =x"—a#l.

Algorithm SQUAREFREE VIA TAYLOR COEFEICIENTS will work over any
perfect field of characteristic p= 0, provided that we have an effective procedure for
extracting pth roots, The question of squarefreeness over arbitrary fields is undecidable
(von zur Gathen [1984]).

7. Some reductions. The previous sections have left open parallel versions for a
number of factorization problems that have good sequential solutions. The two most
important ones—concerning boolean circuits—are the ged of two integers (see Open
Question | in Borodin-von zur Gathen—Hoperoft [1982]) and:

Open question 7.1. Can univariate and multivariate integer polynomials be fac-
tored fast in parallel?

The univariate factorization problem would probably be attacked along the lines
of Lenstra-Lenstra-Lowvisz [1982] via computing short vectors in L-modules. For
multivariate polynomials, one might use Kaltofen's [1982], [1983a] reductions. We now
give the parallel versions of these reductions, and alsa reduce the integer ged's to a
special case of the short vector problem.

In this section, we are concerned with the circuit (=parallel boolean) complexity
(rather than algebraic complexity over an arbitrary field) of functions: see Cook [1983]
for an excellent overview of this theory. Our notion of reduction comes from Cook’s
paper: A boolean function f is NC-reducible to another function g if there exists a
Ug.-uniform family («,),.n of boolean circuits—of depth O(log*n) for some
k e N—where a, computes f on inputs of length n and is allowed to have oracle nodes
for g. An oracle node for g hds input edges x,,- - -, x, and output edges yi.- -, ¥,
whose values satisfy g(x,, - - » %) =(¥,- - -, ¥). Such an oracle node contributes
[log r] to the depth of the circuit.

The functions INTEGER GCD, UNIVARIATE FACTORIZATION OVER 0,
and MULTIVARIATE FACTORIZATION OVER Q compute the (nonnegative)
ged of two integers, the complete factorization of a polynomial in Q[x], and of a
polynomial in Q[x,, - - -, x,], respectively. For the last problem, the input size is given
by the length of a dense encoding of the polynomial, For the sparse encoding, a
probabilistic sequential polynomial-time algorithm is known {von zur Gathen [1983a]),
but a fast parallel version of that reduction to the bivariate case 15 open. A function

822 JIOACHIM VOM ZUR GATHEN

is called SHORT VECTORS if it takes as input vectors a,,-**,d,€Z", linearly
independent over (), and returns a vector x in the Z-module (“lattice’) M=% gL Z"

such that Yye M0} |x|=2"""¥y].

Thus x is a shortest vector in M, up to the factor 2'"7'"? arising in the work of
Lenstra—Lenstra-Lovisz, with respect to the Ly-norm |y|=(E ¥)""%. A function is
called SHORT VECTORS IN DIMENSION TWO if it takes a,, as€ Z” as inputs and
produces an x as above; instead of the factor 2°7""* we allow an arbitrary constant c.

THEorREM 7.1, 1. UNIVARIATE FACTORIZATION OVER Q is NC-reducible
to SHORT VECTORS.

2. MULTIVARIATE FACTORIZATION OVER Q is NC-reducible to UNI-
VARIATE FACTORIZATION OVER (.

3. INTEGER GCD is NC-reducible to SHORT VECTORS IN DIMENSION
TWO.

Proof., 1. and 2. follow from the reductions of Lenstra—Lenstra—Lowviisz [1982]
and Kaltofen [1983a], using the results of the previous sections. Mote that one has to
use a quadratic Hensel iteration instead of the more common linear one. One might
either lift each factor separately and discard duplicate ones at the end, or one might
lift all irreducible factors mod p simultaneously to factors mod p* (p, k as usual). (See
e.g. von zur Gathen [1984] for formulas for this lifting.)

For the reduction in 3., let ¢ be the constant of the algorithm SHORT VECTORS
IN DIMENSION TWO. We can assume ¢ N. In order to compute the ged of a,
be Z, we can assume that a is positive, and associate to a, b the two vectors u=
(alac+1),0), v={blac+1),1)eZ* If x=(x,, x;) is a short vector in the Z-module
M=uZ+vZcZ? ie.

Vye M0} [x|=elyl,

then we compute g =ged (a, b) as follows.
1. Set S={ieZ:1=i=c, x;fieZ, x.bfaicX}.
2. Set m=max 8. (We will show that § = &)
3. Return |am/ x| as ged (a,).
We now make two claims:
(i) 3keZ, 0<|k|=c and x=(0, ka/g). (This k is unique.)

(i) k=m.
Then g = am/ x2, and the correctness of the algorithm follows. To prove claim (i), let
b
7 g g (:},5) & M\{0}.
g g 4

It is sufficient to show that for w=(w;, w;) =su+twe M we have
|w|=¢|z| & ke Z,0=|k|=cand w=kz.

(In particular, £z are the two shortest nonzero vectors in M, and any element of M

in the circle around 0 of radius ¢|z|is an integral multiple of z.} “<=""is clear. For “=7",
assume |w|= c|z|. Then

[(sa+th)(ac+1)|=|w,| = |w|=c|z|= ,:g,

and ac+ 1= ca/g, hence sa+1h=10. The only solutions s, ¢ of this equation are of the
form 5 %
s=k-—, t=k=-,
4 E

ALGORITHMS FOR ALGEBRAIC PROBLEMS 823
for some k< Z. Then w=su+re=(0, ka/g). From
a a
[k[E= |wa| =|w|=c|z| = c—

we get |k|=c

In order to prove claim (i), we use from claim (i) that there exists k= Z such
that 0<|k|=c and x=(0, ka/g). It is sufficient to show that S={icZ:i|k} The
inclusion 2" is clear. For “<”, let i€ § and pe N prime, and e,, &, €., e, e be the
multiplicities of p in a, b, g, i, k resp. Then e, =min {e, e,}. If ¢, = &,, then from
ka/ig=x,/icZwegete +e,= ¢ +e and e, = e, If &, = ¢, then from kb/ig = x.b/ ai €
L we get epte,=e+e, and e = e, In either case, the multiplicity of p in k is not
less than its multiplicity in i It follows that i divides k. O

We remark that in the reduction for 3. only two special cases of integer division
were used: for a, be Z, test whether a divides b, and if it does, compute the quotient.
Reif [1983] has shown that the quotient and remainder of two n-bit integers can be
computed in O(log n log®log n) parallel bit operations, and Beame-Cook-Haoover
[1984] have improved the parallel time to O(log n) with a slightly weaker uniformity
property.

Open question 7.2. Can short vectors in Z-modules be computed fast in parallel?

8. Conclusion. We have shown that a number of algebraic problems with poly-
nomial-time sequential solutions have polynomial-log-time parallel solutions. The basic
routines are those of linear algebra; all other problems get reduced to these.

The most important open questions are the factorization of integer polynomials,
and the analogous sequential vs. parallel behaviour for integer problems, e.g. computing
the ged of two n-bit integers with log™" n bit operations in parallel. We have reduced
this problem to a subroutine that is likely to be employed in factoring integer poly-
nomials,

In von zur Gathen [1983b] we show in a general framework that problems like
Padé approximation, partial fraction decomposition {with factored denominators), and
various interpolation problems also have a fast parallel solution. Ongoing work at
Toronto has resulted in a fast parallel factorization procedure for multivariate poly-
nomials over finite fields (von zur Gathen-Kaltofen [1983]) and an irreducibility test
for multivariate polynomials over C (Kaltofen [1983b]).

REFERENCES

P. W. BEAME, 5. A, CooK AND H. J. Hoover, Log deprh circuits for division and related problems, Proc.
25th IEEE Symposium on Foundations of Computer Science, Singer Island, FL, 1984,

5. 1. BERKOWITZ, On computing the determinant in small parallel time using a small number of processors,
Inform. Process, Lett. 18 (1984), pp. 147=150,

E. K. BERLEE AMP, Facloring polynomials over finite fields, Bell System Tech. 1., 46 (1967), pp. 18531859,

. Factoring pelvnomials over large finite fields, Math. Comp., 24 (1970}, pp. T13=T735.

A BoroDIN, 5. Coor aND N. PrrrENGER, Parallel computarion for well-endowed Angs and space bownded
probabilistic machines, Tech. Rep. 162783, Dept. Computer Science, Univ. Toronto, Inform. and
Control, to appear.

A, BORODIN, J. vON ZUR GATHEN anD 1. Hoepcrorr, Fast parallel matrix and ged computations,
Inform. and Control, 532 (1982), pp. 241-256.

W. & Brown, On Euclid's algerithm ard the computarion of polvnomial Greatest Common Dioisors, 1,
Assoc, Comput, Mach., 18 (1971), pp. 4758-504,

W. 5. BROWHN AND J. F. TRaus, On Euclid’s algorithm and the theory of subresultants, 1. Assoc. Comput.
Mach., 18 (1971), pp. 505-514,

824 JIOACHIM VON ZUR GATHEN

D G. CANTOR AND H. ZASSENHAUS, On algorithms for factoring polyvnomials over finite fields, Math
Comp., 36 (1981), pp. 587-592.

G. E. CovvLing, Subresultants and reduced polynomial remainder sequences, J. Assoc. Comput, Mach., 14
{1967), pp. 128-142,

5. A. Cook, The classification of preblems which have fast parallel algorithms, Proc. International Conference
on Foundations of Computation Theory, Borgholm, 1983, pp. 78-93,

L. Csanky, Fast parallel matrix inversion algorithms, this Journal, 5 (1976), pp. 618-623.

W. EBERLY, Very fast parallel matrix and polynomial arithmetic, Proc. 25th IEEE Symposium on Foundations
of Computer Science, Singer Island, FL, 1954,

J. EomonDs, Sysiems of distinct representatives and lnear alpebra, J. of Res. Nat. Bureau of Standards,

71B (1967), pp. 241=245.

N. 1. Fing, Biromial coefficients modulo a prime, Amer. Math. Monthly, 54 {1947), pp. 5830-502,

L von #UR GATHEN, Hensel and Newton methods in valuation rings, Tech. Report 155 (1981), Dept.
Computer Science, Univ, Toronto, Math. Comp. to appear.

[83a), Factoring sparse multivariate polynomials, Proc. 24th IEEE Symposium on Foundations of
Computer Science, Tucson, AZ, 1983, pp. 133-137.

[83b). Representations of rational functions, Proc. 24th IEEE Symposium on Foundations of Computer
Science, Tucson, AZ, pp. 172=179; this Journal, to appear.

1. won ZUR GATHEN AND E. KALTOFEN, Polynomial-time factorization of muliivariate polynomials over

finite fields, Proc. 10th ICALP, Barcelona, 1983, pp. 250-263.
E. KaLTorFen, A polynomial-time reduction from bivariate ro wnivariare inregral polynomial factorization,
Proc. 23rd Annual IEEE Symposium on Foundations of Computer Science, Chicago, 1982, pp.
5764,
[83a], Polynomial-time reduction from multivariare to bivariate and univariate integer polynomial
factorization, this Journal, 1o appear.
[83b], Fast parallel absolute irreducibility testing, manuscript, November 1983,
D. E. KnUTH, The Ant of Computer Programming, Vol. 2, 2nd ed., Addison—Wesley, Reading MA, 1981,
E. KRONECKER, Zur Theorie der Elimination einer Variabeln aus zwei algebraischen Gleichungen,
Monatsberichte der Akademie der Wissenschaften, Berlin, 1831, pp. 535-600.

A K. LensTRA, H. W, LENSTRA AND L. LOVASZ, Factoring polvaowilals with rational coefficients, Math.
Ann., 261 (1982), pp. 515-534.

E. Lucas, Sur lei congriuences des nombres ewlériens er des coefficlents différentiels des fonctions
rigonamériques, suivant un module premier, Bull. Soc. Math. France, 6 {1877/78). pp. 49-54.

J. Muir, Letter from Mr, Muir to Professor Sylvester on the word continuant, Amer. J. Math., 1 (1878),
p. 344

1. ReIF, Logarithmic depth circuits for algebraic funciions, Proc. 24th Annual IEEE Symposiom Foundations
of Computer Science, Tucson, 1983, pp. 138-145.

W. L. Ruzzo, Cn uniform circuit complexity, J. Comput. System Sci., 22 (1981), pp. 365-383,

V. STRASSEN, The computational complexity of continued fractions, this Journal, 12 (1983), pp. 1-27.

L. G. WaL1aNT, Reducibility by algebraic prajections, in: Logic and Algorithmic, Ziirich 1980, Monographie

No. 30, Enseignement Mathématique, pp. 365-380.

