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Irreducibility of Multivariate Polynomials*
JoacHIM VON ZUR GATHEN

Department of Computer Science, University of Toronto, Toronto, M5S 1 A4 Canada

This paper deals with the problem of computing the degrees and multiplicities of the
irreducible factors of a given multivariate polynomial. This includes the important question of
testing for irreducibility. A probabilistic reduction from multivariate to bivariate polynomials
is piven, over an arbitrary (effectively computablc) ficld. It uscs an cxpected number of ficld
operations (and certain random choices) that is polynomial in the length of a computation by
which the input polynomial is presented, and the degree of the polynomial. Over algebraic
number fields and over finite ficlds, we obtain polynomial-time probabilistic algorithms, They
arc based on an effective version of Hilbert’s irreducibility theorem. @ 1985 Academic Press, Inc.

1. INTRODUCTION

The problem of factoring polynomials has a venerable history going back to the
dast century. The first polynomial-time algorithms are Berlekamp’s [2,3]
2 {probabilistic) methods over finite ficlds. Zasscnhaus [52] proposed a Hensel lifting
nethod for integral polynomials, but no polynomial-time algorithm was known for
ore than a decade. Lenstra, Lenstra and Lovasz |32 ] provided polynomial-time
actonzallon for univariate polynomials over the rational numbers, and Kaltofen

. 19, 227 for multivariate polynomials. The subsequent results by Chistov and

ngoryev [6], von zur Gathen and Kaltofen [ 11 ], Landau [26], Lenstra [29-31]
mhow tI'1t multivariate polynomials over algebraic number fields or finite fields can
3 ibe factored in polynomial time.
All factoring algorithms rely on a modular approach, which eventually reduces
-the given problem to that of univariate polynomials over finite fields, which is then
Ssolved by some variant of Berlekamp’s algorithm. An unpleasant phenomenon is
hat irreducible polynomials may have reducible modular images; the older
salgorithms used trial combinations of these factors, and incurred exponential cost
Sin the worst case [ 3, 24 ]. In practice, however, this phenomenon seems to occur so
Zrarely that for implementations it is not a real problem. (Weinberger [49] proved
existence of a polynomial-time algorithm to compute the number of factors of a
funivariate polynomial with rational cocfficients assuming the extended Riemann
‘h ypothesis.)
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As an explanation of the above empirical observation, sometimes Hilbert’s
irreducibility theorem was cited. It states that under some (and in fact, most) sub-
stitutions an irreducible multivariate polynomial with rational coefficients remains
irreducible. However, the usual versions of this theorem are ineffective and do not
provide an algorithmic approach. Heintz and Sieveking [15] and Kaltofen [18,19]
have established polynomial-time algorithms with the help of certain variants of
Hilbert’s irreducibility theorem. The central result of this paper is a probabilistic
effective version of Hilbert’s irreducibility Theorem for polynomials over arbitrary
fields.

The polynomial-time algorithms mentioned above use a number of operations
which is polynomial in some “size” s(f) of an input polynomial fe F[x,,.., x,]. We
will count the arithmetic operations in F; if the clements of F are represented over
some finite alphabet and we can cstimate the size of intermediate results, then we
get a bound on the number of “bit operations.”

Disregarding the question of representation of field elements, there are (at least)
four different ways of representing a polynomial fe F[x,,.., x, ] of degree d, each
giving a notion of “size.”

The first is the dense representation, where the coefficient in f of each monomial
in x,,.., x, of degree at most d is given. Thus there are f§,, = (“%") coefficients to be
specified, and since a monomial of degree d can be represented by its coefficient and
d factors, the “dense size™ of fis s4.,..(f)<(d+ 1)f... (We neglect the O(log n)
cost of encoding the index 7 of x,.)

The second one is the sparse representation, where a sequence of pairs

(monomial x¢'--- x¢, coefficient f, € F)

is given, with f=3, . f.x$ - xo. If we consider e, + - +e,+1 as the size of
such a pair, then we have for the “sparse size” Coldl i

d+k &‘\plr{f] = (d+ I }k

il /'has k nonzero coefficients. The dense representation is of course a special case of
the sparse one.

The third representation is by a formula (or “arithmetic expression” or “term”)
involving the operations x ..., x,, constants from F, and +, —, *, /. The size of a
formula is the number of operations used, and the “formula size” Storm{f) 18 the size
of a smallest formula for . (It is common to count only the operations 4, —, *, /
for the formula size; including inputs and constants in the count changes it at most
by a factor of 3, and here is more consistent with the computation model discussed
below.) The sparse representation is the special case of a formula which is a sum of
products of one constant and variables.

The fourth representation is by a computation using the operations x,,.., x

nt

constants from F, and 4+, — * /. The size of computation is the number of
operations used, and the “computation size” Scomp(f) is the size of a smallest com-
putation for /. A formula is a special computation, with fan-out at most 1.




MULTIVARIATE POLYNOMIALS 227

We clearly have

Sdense = Sspar 2 Sform 2 'gcomp!
and for each inequality, there are examples where the gap is exponential. We
remark that if the number »n of variables is constant and the degree d of f is
polynomial in s5.ms(f), then all four sizes are polynomially related, since
Sdense(f) < (d+n)" 7. (In view of the symmetry of f,,, one may interchange the
roles of d and »n in this remark.)

The multivariate factoring algorithms mentioned above have running time
polynomial in $4.,.. In this paper we consider the problem of finding the “fac-
lorization pattern” of a polynomial, ie., the degrees and multiplicities of its
irreducible factors. This subsumes of course the problem of testing for irreducibility.
We give a probabilistic reduction for this problem from multivariate to bivariate
polynomials, for which the number of arithmetic steps used is polynomial in the
size s of a computation by which the input polynomial f is presented, and the
degree d of f. (We cannot say “polynomial in s,,(f)+d,” since a given com-
putation may have length more than polynomial in §.,,,(f), and it seems difficult
to then find a computation of short length for f; see Strassen [45, Problem 1.27.) It
is clear that d may be exponential in s, and already very simple questions, e.g.,
whether the ged of two univariate polynomials is nontrivial, are NP-hard if s is the
only parameter describing the input size [34].

The reduction for the factorization pattern is based on Theorem 4.5, which gives
a probabilitstic effective version of Hilbert’s irreducibility theorem. It states that
over an arbitrary field for certain random substitutions, which reduce multivariate
to bivariate polynomials, the factorization pattern remains unchanged with high
probability. The proof of the effective irreducibility theorem uses methods of
algebraic geometry. We quote a Bertini theorem from Lang’s textbook [27] that
asserts that a general hyperplane scction of an irreducible variety is irreducible.
Apart from this theorem, only basic notions from the first chapter of Shafarevich’s
textbook [39] are used.

Using the results mentioned above for bivariate polynomials, we obtain
probabilistic polynomial-time bit computations for the factorization pattern of mul-
tivariate polynomials over two types of fields. The first type, the algebraic number
fields, is discussed in Section 6 and includes of course the important case of the
rational numbers. Here a problem is to control the size of intermediate results when
computations are evaluated for specific inputs. We represent a probabilistic
simulation of a computation in a number of bit operations which is polynomial in
the input plus output size. The second type are the finite fields, considered in Sec-
tion 7. Now the field may not have enough elements to make the probabilistic
algorithms work, and we extend the field. In general, when one makes algebraic
extensions of fields, polynomials have a tendency to split. We prove that for certain
extensions—easy to describe and arbitrarily large  this does not happen.

Heintz and Sieveking [15] have given a test for absolute irreducibility (i.e.,
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irreducibility in C[x,,.., x,]) of integral polynomials. This has been improved by
Kaltofen [21] to random polynomial-time, also allowing a fast parallel version.

A more difficult problem than testing for irreducibility is to actually factor a
given multivariate polynomial. A heuristic approach was given in Zippel [53];
solutions are given in [10, 23]. The expected running time of those algorithms is
polynomial in s, (f) and deg/; [10] assumes that the number of factors is
bounded. It remains a challenge to see whether the cost for factoring can be made
polynomial in the size of a computation for f and deg f.

2. THE BERTINI THEOREM

The theorems going back to Bertini [4] come in several flavors. They usually
assert that if an algebraic variety (embedded in some affine or projective space) has
a certain property, then—under suitable conditions— also the intersection with a
general hyperplane has this property. Properties considered include smoothness,
normality and the case of interest to us: irreducibility. The first rigorous proofs of
this case seem due to van der Waerden [481] and Zariski [50]; see Jouanolou [17]
for a modern approach.

In the context of algebraic computations, Bertini’s theorem has been used by
Heintz and Sieveking [15] for testing whether integer polynomials are irreducible
over C. In this scction, we put Bertini’s theorem in the form that we need. It then
asserts that for an irreducible polynomial over an algebraically closed field in n
variables there exists a lincar substitution for n — 2 of the variables such that the
resulting bivarialc polynomial is irreducible. We use this to show in Lemma 4.3 that
“almost all” substitutions have this property.

We will use substitutions by linear functions of two variables throughout the
paper, and it is convenient to have a notation for them.

DermniTion 2.1, If Fis a field, n2 2, fe F[x, ..., x,] and
U= (1, 0, W)= (U3peuey Uy, V3000, Wysooy, W, ) € FHT=2)
then we define /{¢} as
J{t) =1 (xys Xoy Us x| + V3 X0+ Wy,...,
u,x,+v,x,+w,)eFlx,, x,].
THEOREM 2.2 (Bertini). Let K he an algebraically closed field, n=2 and

fe K[x,.., x,,| irreducible. Then there exists an algebraically closed field L contain-
ing K and te L*" % such that f{t} e L[ x,, x»] is irreducible.

Proof. We prove the theorem for all algebraically closed fields X and all
polynomials by induction on n. We can assume that n>3. Let Vi Phgtbe
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indeterminates over K(x,,.,x,), F an algebraically closed field containing
K(y1ses Vi), and

R e S o D o ey el i o [ b o
By the Bertini theorem in Lang [27, Chap. VIII, Proposition 127, the ideal
=Ly ey peax]
is prime. If we consider the embedding

o O B PR gy (0 [ O ot

which is the identity on {x,,.., x, ,}, and
g =j-{X| Irve xn iy ya'"l'rn) & F[x]. J4evy -xn ]].-

then ¢~ '(/) is prime, and ge ¢ '(I). Considering the section
W F X ey ] =l X504 ]

of ¢ with Y(x,)= — y/y,, one sees that ¢~ '(I) = (g). It follows that g is irreducible.
Applying the induction hypothesis to g, we find an algebraically closed field
LoF2K and 1= (4, v, w)e L*" 3 such that

g{t} =f(x1, Xa, Us X, + 03X+ Wypooy Uy X140, X3+ W, 1,
—1
— nixityaxa+ Y ylwxi 40,5+ w) =y, 1)) € Llx;, x,]

s I<j=n

is irreducible. Then

—1
r—(u;,..., g (v +03 vJ-uj),
Y Igsj<n
=]
lh Lt ;;_13 , J)1+ L V;U’ N

3=

o | 2
Waseon Wy il ( Z -F."’H;‘." Yoy 1)) ELJE" )

Yn I<ji=n
satisfies the claim of the theorem. |

The following question comes up naturally: does Theorem 2.2 also hold for sim-
ple substitutions x;=w,e L? We briefly discuss this question and give a criterion.

The answer to the question is negative in general: f=(x,+x,)> —x;€
K[x,, x,, x;] is irreducible, but for any algebraically closed L2K and we L the
polynomial (x, +x,)* ~we L[ x,, x,] is reducible.
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For the criterion below we first note that if x,, say, does not occur in f, then
Nxy, x5, wy,. w,) € L[ x,] is univariate, hence reducible for algebraically closed L
(assuming degree at least 2). We can therefore assume that both x, and x, occur in
/. and then the composition

X[x31“" xn] = K[xlv'"! xn.’ * K[Il,..., xn]/{f} =R

is injective, so that we get an embedding from K(x;,..., x,) into the quotient field o
of R.

THEOREM 2.3. Let K be an algebraically closed field, n = 2, and fe K[ x,,...., x, |
irreducible, with x, and x, occurring in f. The following are equivalent:

(1) f(xy, X2, Wayy w,) is irreducible for some we K" .
() flxy, x5, Wy, w,) is irreducible for “almost all> we K"~ 2,
(iii)  K(xy,..., x,,) is algebraically closed in Q.
(iv) f is irreducible in L[x,,x,], where L is an algebraic closure of
K(x4,..., X,,).

The result will not be needed in the rest of the paper, and we forego a proof.

3. CoNEs

In this section we prove that mappings given by polynomials of small degree can
be separated from points outside (the closure of) their image by test polynomials of
small degree (L.emma 3.3). This will be used in the next section to scparate the
reducible polynomials from some irreducible ones.

The first proof of this lemma uses only cones and other elementary notions from
algebraic geometry, as, e.g., in Shafarevich [39, Chap. 1]. We assume this material
throughout the section. The reader more familiar with algebraic geometry may skip
to the end of this section for a second, more concise proof.

We recall the standard definition of a cone. If X < F is a closed irreducible sub-
varicty of dimension n, and L< F”\ X an affine linear space of dimension
ism—n—2, then

CX,L)={(l —¢)x+cle F":xe X, leL,ceF}
={yeF™ 3xeX 3leLsuch that y lies on the line
through x and /} < F™

is the cone over X with vertex L. If L= {a} consists of a single point, we write
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C(X,a) for C(X, {a}); similarly for X ={x}. If furthermore @:F'— F" and
A: F' = F™ are mappings with im ¢ = X, im A= L, and 4 linear, then

Clp, A): F'xF'x F— F™
(a, b, c)= (1 —c) ¢(a) + cA(b)
is a mapping with image C(X, L).

LemMa 3.1. Let F he an algebraically closed field, X = F" a closed irreducible
variety of dimension n <m—2, and h e F™\ X. Then there exists an affine linear space
L= F™\X of dimension m—n—2 such that the cone Y= C(X, L) has dimension
m—1, and h¢ ¥, where Y is the closure of Y in F".

Proof. We show by induction on i for 0 <i<m — n— 2 that there exists a linear
space L, F™\ X of dimension / such that the cone Y,= C(X, L,) has dimension
n+i+1,and h¢ ¥,

For the case i=0, we consider an embedding F"<P™ of F” into projective
space, the closure X of X in P, and the triples of collinear points

T={(x,y,2)eP"xP"xP™ x=yorx=z
or y=zorx,y, z lic on one line }.
T'is a closed subset of (P™)?, since x, y, z are collinear if and only if the 3 x (m+ 1)
matrix given by the projective coordinates ol x, y, z has rank at most 2. Let

my: T— P™ be induced by the projection onto the second factor. For ae P™\ X,
consider the projective cone over X with vertex a:

C,= {yeP™: 3xe X such that y lies on the line through x and a}
=T (XxP™x {a})).
The fibers of the projection of 7'~ (X x P™ x {a}) onto X are all isomorphic to P',
and therefore this intersection is irreducible of dimension n+ I. Therefore C, is

closed and irreducible, and of dimension at most #+ 1. It contains X properly, and
therefore dim C,=n+1<m. Also,

CX,a)=C,,
and also the closure in F™ of C(X, a) is contained in C,. For a, be P™\ X, we have
hECuﬁaECh.

For any ae (P"\C,)n F", we have
h¢ C,oC(X, a).
The case i =0 is proven.
For i> 0, by the induction hypothesis there exists a linear space L; _, of dimen-
sion i— 1 such that ¥, ,=C(X, L, ,) has dimension n+i<m—2, and h¢ ¥, ,.
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Now we apply the case i=0, and find ae F"\ ¥,_, such that Z=C(¥, ,,a) has
dimension n+i+1 and h¢ Z. Let L,=C(L,_,, a) be the linear space spanned by
L, | and a. Then Y,=C(X, L;) has dimension n+i+ 1, and we now show that
¥.cZ For any beY,, there exist xe X and celL, such that beC(x, ¢), and
de L, such that cc C(d, a). Then C(x,d)< ¥, ,, and the plane spanned by a, 4,
and x is contained in Z. (The figure illustrates the case where C(a, b) and Clx, d)
are not parallel, and thus be Z.) In particular, be Z and thus ¥,< Z, and h¢ ¥,.
(In fact, ¥,=Z.) |

7 xeX

The following is a variant of Lemma 2.3 in Strassen [45], appropriate to our
context.

LEMMA 3.2.  Let F be a field, m, n, s, te N, and the mapping
(P = ({Pl'!“ﬂ (Pm]: FI X F\'?r

be given by polynomials @,,..., ¢, € F{x,..., x,] of total degree at most 1. If

(,\‘ - m) (sr +n
} k]
m n

then there exists te F[y,,.., y,, ]\ {0} with deg 1 <s and t(¢,,..., ¢,,)=0.
Proof. Consider the F-vector space
A={telF[y s V] deg T <5,
and the F-linear mapping
o*: A - Fl[x,.., x,]
T=T7(@ ),y @)

For 1€ 4 we have deg(¢*(1)) <'st, and the image of @* is contained in the vector
space

B={ageF[x,.,x,]|:deg o <st}.
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Since

(S+m)rdimA>dim B=(”+”),
m n

we have ker(p*) # {0}. Any teker(¢*)\ {0} is sufficient. ||

LEMMA 3.3. Let m, n, t, ¢: F" = F" be as in Lemma 3.2, hy,.., h,e F" for some
r= 1, assume that F is algebraically closed, that there exists ue F* with ¢~ '(¢(u))
finite, and that there exists © with

TE F[JM yuney ym]?
T(qol.‘""' qom)__-o’ (*)
visr.  tlh)#0.
Then there exists t with (*) and deg t<m(t+1)" "

First proof. Let X=im ¢ be the closure of im ¢. Since ¢ has a finite fiber,
dim X = n. Also,

Jt with (#)sh,,.., h ¢X.

We first consider the case r=1, and let A=h,. Let L< F"\ X be a linear space of
dimension m —n—2 as in Lemma 3.1, with ¥=C(X, L) of dimension m — 1 and
h¢ Y. Furthermore, let A: F”"~"~2 — F" be a linear map with image L, and

=Clplia)y =ty pm

Y is given by polynomials ..., ¥, € F[x,,.., x,, ] of degree at most 7+ 1, and
there exists te F[ y,,..., ¥,,] such that

Ty s W) =0, T(h) #0.
Now let s=m(t+1)"~'. Then

s+m)_(s(!+l)+m-l)"_ (s+1)-(s+m)
( m m—1 C(s(r+ D)) (s(r+ 1) +m—1)m

S( 1 )m 1
>—{— =1,
m\r+1

S+J s 1
s(i+ 1)+ 141

(s+m\ _ [s(t+ 1)+m—~l)
(. e m—1 :

since

for all j= 1. Therefore
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and by Lemma3.2 there exists t,€ F[y,,.,»,,]1\{0} with degr,<s and
oW1 s ¥,,) =0. Since ¥=im  is an irreducible hypersurface and h¢ Y, there
exists some irreducible factor t of o with (y,,..., ¥/,,) =0, and then 7(h)#0. This
proves the case r = |. The lemma now follows by induction on r > 1. For the induc-
tive step, we may assume T, 7,€ F[ yy,..., »,,] such that t(¢,,.,¢,)=0 and
degr,<m(t+1)""'fori=1,2, and

Vi<r, 7,(h,) #0,
ta(h,) #0.
Then there exists w e F such that t =1, + ut, satisfies (*).

Second proof (with a slightly different bound). The graph of ¢
G={(a,b)eF"xI":Yi<m,b,—@la)=0} < F"x F"

is closed and irreducible, and dim G = n. By Strassen [46, Lemma 6.5, deg G < (™"
We now use that taking projections or cones of varieties does not increase the
degree [13, Chap. 1, Sect.3, pp.172-173]. Therefore X =im ¢ = proj,(G) has
degree at most ™, and X is the set of zeroes of some polynomials of degree at most
™ ([ 14, Proposition 37; this fact can also be proved using cones as above). Some
polynomial of degree at most ¢ then vanishes on X but not at any of &, h,. |

4. AN EFrecTIivE HILBERT IRREDUCIBILITY THEOREM

Hilbert’s [16] irreducibility theorem asserts that for an irreducible polynomial
JeQ[x,,.., x,] there exists a substitution by integers for all but one variable such
that the resulting univariate polynomial is irreducible. In this section, we prove an
effective version of this theorem, and at the end of the section compare with
previous results.

The approach is as follows: First we consider algebraically closed fields, so that
we can apply Lemma 3.3. We prove existence of a “test polynomial” t of small
degree which separates the reducible bivariate polynomials (of degree at most d)
from given irreducible polynomials A, ..., k,. Thus the vector of indeterminates of 1
corresponds to the vector of coefficients of a bivariate polynomial with degree at
most d, t(h;) #0 for 1 <j<r, and t(g)=0 for every reducible polynomial g. (Such
a separation is in gencral only possible if the ground field is algebraically closed,
and then clearly only makes sense for polynomials in at least two variables.)

Given a polynomial /' in many variables of total degree at most d, we consider the
substitution x;=u;x,+v,x,+w, (for i>3) as a mapping from the set of
(44, v;; w;)'s to bivariate polynomials. If / is irreducible, then Bertini’s theorem
guarantees that some irreducible 4 is in the image of this mapping. Then t as above
scparates the “unlucky” substitutions, under which f becomes reducible, from the
lucky ones. In particular, f remains irreducible under “almost all” such sub-
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stitutions. This is the required irreducibility theorem for algebraically closed fields.
It is then easy to extend it to general fields. Actually, rather than just irreducibility,
even the “factorization pattern”™ of a general polynomial is preserved under almost
all substitutions of the above type. Let

ﬁﬁ(auzrz)

Xy={geFlx, yl:degg<d},
Y,={ge X, gis reducible or ge F}.

and

We fix some isomorphism X, — F*, so that ©(g)e F for t ¢ F[ y, ..., vg,) and ge X,.

LemMma 4.1. Let F be an algebraically closed field, d, re N, and By ey o8 XN Ky
Then there exists 1€ F[ y,..... y;,] such that

Vge ¥, 7(g)=0,
ngr, T(hj)¢0s

d
deg t< i B30

Proof. Let k=|d/2 |, and for 1 <i<k let
Rt Xy x Xy ;= X,

be given by the multiplication of polynomials. Let Z,=imyu,. Then
Y;=Ui<i<x Z,- We first prove that each Z, is closed. Consider the projectivization
PX, of X,, which is a projective space of dimension f,— 1, and similarly PX, and
PX,_ ;. PX, can be viewed as the set of equivalence classes of nonzero
homogeneous polynomials in F[x, y, z] of degree d, where two polynomials are
equivalent if one is a scalar multiple of the other. The mapping

$: X\ {0} > PX,

[rclass of z9f (E E)

z'\z
is a bundle with fiber F\ {0}. Multiplication again gives a mapping
PX,xPX, ,—PX,.

The image Z of this mapping is' closed [39, Chap. 1, Sect. 5, Proposition] and

therefore Z,\ {0} =¢ '(Z) is closed in X,\ {0}. Since 0¢ Z,, Z, is closed in X,
W 1s given by quadratic forms u,...., Kip, in B+ P, variables. Since Z,c Y, is

closed in X, and h,,.. h.¢Z, there exists ;€ F[ yi,.. yp,] such that
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O Mir sees Hig,) =0 and a(h) 40 for 1<j<r. In order to apply Lemma 3.3, it
remains to find a finite fiber.

Of course y; has no finite fiber, since u(cf,, (1/¢) f2) = pd f1, />) for all ce F\ {0}
and (f,,f>)eX,;x X,_,. So we consider

X* = {fe X,: the cocfficient of xin fis 1},
pr=pw N(XFx X, ).

X?* < X, is an affine linear subspace of dimension §, — 1. If /, & X¥and f,eX, ;are
irreducible and ged(f,, f,) =1 (such f,, f> exist!), then

(1) u¥(f )= ()i L) = {1, ),

and thus p* has some finite fibre. Clearly im u* < imp, = im u;= Z,. In order to
prove im p*=Z,, let (f,, f,)e X;x X, _,. I the coefficient ¢ of x' in /1 is nonzero,
then (1/c)f,e X¥ and uX((1/c) f1, cfy) = ufi, fr)eim u*. If ¢=0, then consider
for ue F\ {0},

. ol .
gl{u}zx’“";fIEan gl(u}=£€f2€Xd—h
and for ue F,
golu) =ux'f + £, f.

It u#0, then go(u)=ur(g,(u), g (n))eimu¥, and W= {gy(u):ueF\{0}}<
im p*. Therefore

P-:‘(fnfg}-_gg((]')&“ W< im Ju;".

We now apply Lemma 3.3 to u*. Note that o, as above separates im p* from
hy.... h,. It follows that there exists t,€ F[ y,..., y,,] of degree at most §,3% ' such
that

ti'{:u'?l it ﬂrﬁd} iy 0'
Vi<r, T(h;) #0.

Now t =1, -1, is sufficient. []

LEMMA 4.2, Let FS K be fields, fe K[ x, .., x,]\F[x,..., x,] of total degree d.
Then there exists p € F[Us,.... U,, Vs,.., V,, Wy,.., W, ]\ {0} of degree at most d
such that for all te F*"~?) we have

p(1)#0=f{1} ¢ FLx,, x,].
Proof. Write ’
f= % fixt ot

ie "
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with f; € K. By assumption, f,¢ F for some ie N". Let
m=max{i,+ -+ +i,:ieN"and f, ¢ F},
my=min{i :3i,,.,1,eNsuchthati, + ---i,=mand f;¢ F},
I={ieN™" i+ +i,=m, iy=m,, and f,¢ F}.
For any te F*" ?), the coefficient of x71x7 ™ in
Hi}= Z Fixix3(usx, + 0300+ W) (1, X, +0,%5+ w,)"
e "
is
a(t)+ Y fiv§:-vi
ict

for some a(1) e F. We now consider K as a vector space over F. Let j, ... j, e/ be
such that

(-)(_'N‘ffl ""’j}g)

with f, =1 is a basis for the vector space
F+ Y fFSK
iel
over F. Note that s> 1, and, eg., f, ¢ F. Then there exist b, e F, for iel and
0<k <y, such that
fi="Y b,
D=kbey
for all ie . Set
p=Y b Vi VheF[Vs,., V,]
iel

Then p +#0, and for any te F*" ) we have

_f{t}EF[.’CI,xz]—ﬁ' Z (Zbikv?'”v:f) it

ks Nield
=3 (T bufy)ogeok=3 fiuteovher
el Misk=ys iel

=Vk, 1<k<s, ) byvy---vir=0

1ef

=p(1)=0. |
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LeMMA 4.3. Let F be an arbitrary field, n>1, and fe F[x,,..,x,] irreducible of
total degree d. Then there exists a field K containing F and a nonzero polynomial

ceK[U,,.. U,, Vi, V,, Wiyuon W, ]

of total degree less than (d*/6) B, 3%+ d2“ such that for all t = (u, v, w)e F*"~2 with
a(t)#0 the polynomial

ft} =1(xy, x,, Uz Xy + U3 X5+ Wiy U, Xy + 0, X, + W, ) € F[ Xy, x,]

is irreducible.

Proof. Let F be an algebraic closure of F, and S=f\--f. the absolute fac-
torization of f, with f;e F[x,,.., x,] irreducible. (The irreducible polynomials f;
need not be pairwise distinct; if char F=p > 0, then J; may occur p¢ times among
fiss f, for some e>0.)

First note that if L is any field containing F such that Xy, X, are algebraically
independent over L, then cach f, is irreducible in L[xy,.,x,]. Applying
Theorem 2.2 repeatedly, we find algebraically closed fields F< Lyl v =f,
and £;€ L}"~2 such that f,{1,} e L,[x,, x,] is irreducible. Let K=1L,, fix some i,
| <i<r, and consider the mapping

¢_: KJ(:;—Z)_. X{.‘
t=(u, 0, w)>fi1}

where X,~K" By the above, ¢(1,)¢ Y, X, By Lemma 4.1, there exists a
polynomial 7, in 8, variables of total degree at most (d/6) f,3% such that

VgeY, 1(g)=0, and t(d{t,))#0 for 1<i<r,

Since ¢, is given by polynomials of total degree at most 4 in the u;, v;, w;, we have
that

ni=1,¢,€ K[Us,.., Uy, Vs, Vo Wi, W,]=R

is a polynomial of degree at most (4%/6) f,3%, and nit;)#0 for all i. With =
myem,,

Vie K"~ DVi (1) #0=£,{1} is irreducible.

If r=1, then o=meR is sufficient for the lemma. Otherwise, for each
I={1,.,r}=S with I¢ {@, S} note that Jr=Tlic1 fi€ K[ %y, X, J\F[X} 5y X, ]
For any such /, let p,e R be the polynomial from Lemma 4.2 for f,, and

o=mx" H preR.

=8
I+@&.5
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Let 1€ F*"~2) be a substitution such that a(t) #0. Then each f,{1} is irreducible,
and

Sy =fift} - f it}

is an irreducible factorization of Sf{t} in K[x,, x,]. Any factor ge Kl x;, x:] of
f{t} is therefore (up to a scalar multiple) of the form

g=11r{t}

1€l

for some /< {1,..,r}. If g is a nontrivial factor, then p,1)#0 and hence
8¢ F[x\,x;]. Thus f{t} is irreducible. The degree of ¢ is less than
(d/6) B3P+ @2“. |

DerNITION 44, Let F be a field, n,r21, f, Jiv [, € F[x4,..., x,], and
€155 €, 2 1 such that f; is irreducible of total degree d, for each i, and

J=1r
ged(fi f)=1  for 1<i<j<r.
Then (d,, e,;..;d,, e,) is called a factorization pattern for f.

The factorization pattern is unique up to certain permutations. We can make it
unique by stipulating, e.g., that for all L lgi<j<y,

d,<d, and (di=di==e,<e)).

We will implicitly assume some such normalization and speak of rhe factorization
pattern of f. It is now easy to show that rather than just irreducibility, the complete
factorization pattern is preserved under random substitutions.

THEOREM 4.5. Let F be an arbitrary field, n>1 and fe F[x,,.., x,] of total
degree d. Then there exists a field K containing F and a nonzero polynomial
TE K[U},---, U"a V]'s"'\ V.n's W}!'"l Wn] =R

of total degree at most 9¢ such that Jor all t=(u, v, w)e F*"=2 with 1(t) #£0 the
polynomial

Ty =f(xy, x5, uyx, + U3 Xy + Wasey Uy Xy + 0, X3+ W, ) € Fl x4, x,]

has the same factorization pattern as I

Proof. Let
f=f5fl




240 JOACHIM VON ZUR GATHEN

be the irreducible factorization of f in F[x,..., x,], with ged(f,, ;) =1 for i#].
(This is unique up to permutations and scalar multiples.) For | <i<r, let K, and o,
be as in Lemma 4.3 (with £, for /). We can assume that K, < K for some field K and
all i, and then ¢,€ R. Let 0 =[], ., ., 0,. Then for any ¢ F*** ? with a(1) # 0 cach
Ji{t} is irreducible, and the degree of ¢ is less than (d*/6) 3%+ d?2¢.

Forany i, 1 <i<r, let hyy=F[x,,.., x,] be the homogeneous part of £, of highest
degree d,=deg f;. Then

h“ == hm{x| . x:\, U3xl + V_]xz‘m, U"xl + anz}
= F[x] ] XZJ[UJ.V--, Unv VBs"'a Vn]

1s a nonzero polynomial of degree at most d in Us...., V, over Flx,, %] Let n,eR
be the cocfficient of the lexicographically highest term of 4, in x, and x,. Then

ViVi=(u,v,w)e FF" 2 m(u,v)#0=>deg(f,{1})=d..

Set n=m,---m,. Now for any i, 1 <i<r, write

fi= X fuxing,

e Ml

ﬁ __j:'(xln -":2’ U.}xl ] V.'{x? o WB!‘"? ("ruxl ~ 4 V;ix2+ wn)

= Y fxpxgeR[xy, x,]
ec k2
with f,. € F[ x,,.., x, ], and f*e R.
Fix some i,j with 1 <i<j<r. We now provide a condition that guarantecs

ged(fi{t}, f,{1})=1. We know that ged(f), f;) = 1, or, equivalently, /; is not a scalar
multiple of f;. This implies that there exist a, be N2 such that

6 = det (/ ﬁ”) #0,

S ja f;{'!
Set

e (12 1)
o* = det ( + fn eR

Since each [}, /* has total degree at most d, * has total degree at most 2d. Under
the substitution ¥ with Y/(U,) =u(V,) =0 and y(W,) = x, for all i, 3 <i<n, we have
Y(6®)=24. It follows that 6* is nonzero. For any 1e F*"~2 with 0*(1)#0, f,{t} is
not a scalar multiple of f,{r}. Thus if they are both irreducible, ged(fi{t}, f{t}) =1

Now for each i < as above, we take the 6% R as constructed, and let pe R be
the product of all the §*. Since r < d, we have at most (4) <d?*/2 such 6*, and p has
degree at mosl o°.
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With t=gnp e R, the condition (1) #0 guarantees that f{t} has the same fac-
torization pattern as /. Also,

deg t=deg o + deg n+degps%4ﬁ,;3ﬁ”+d22“+d+d3<9"ﬂ. i

Remark 4.6. We want to compare Lemma4.3 with the number-theoretic
“Hilbert irreducibility theorems” to be found in the literature. A rather general ver-
sion is given in Lang [28]; it states that over certain fields F, for any irreducible
polynomial fe F[x,,.,x,] and almost all ds,...,a,€F, the polynomial
S(xy, ay,..., a,) € F[x,] is irreducible. The fields F for which this holds are called
“Hilbertian fields,” and include, e.g., all algebraic number fields, but exclude -by
obvious counterexamples—the finite fields and algebraically closed fields. “Almost
all” then is in the sense of a Lebesgue measure.

This is a2 much weaker sensc than the algebro-geometric “almost all” that we use
throughout this paper. It means that there exists a nonzero test polynomial 7 such
that the required property (herc: preserving irreducibility) holds for any argument ¢
whenever 7(r)#0. Given a bound on the degree of 7, we obtain a probabilistic
algorithm via Fact 4.7 below.

The previous Hilbert irreducibility theorems did not lead to algorithms, since
they failed to provide effectively  (deterministically or probabilistically)
irreducibility-preserving substitutions. Zippel's [ 53] sparse factoring algorithm was
based on the unproved assumption that an effective Hilbert irreducibility theorem
holds over @ for simple substitutions.

However, a number-theoretic result by Sprindzhuk [42] may lead to an effective
version. The ultimate goal here would be a deterministic polynomial-time fac-
torization procedure for sparse multivariate polynomials. Although only valid over
Q@ (or more generally, Hilbertian fields), the number-theoretic irreducibility
theorems have the two advantages of only using simple substitutions of constants
for variables, and of reducing to univariate polynomials. Any method valid also
over algebraically closed fields cannot have either of these advantages (see end of
Sect. 2).

In retrospect, the results of Heintz and Sieveking [ 15] and Kaltofen [18, 197 can
be used to obtain effective Hilbert irreducibility thcorems. Kaltofen [20] exhibits
an elementary proof for a result similar to the present one. It essentially replaces the
9% in Theorem 4.5 by 2¢ and is valid at least in characteristic zero and over finitc
fields. Theorem 4.5 leads to probabilistic algorithms via the following fact.

Fact 4.7 [38, Corollary 1]. Ler t€F[y sy ¥, ] have total degree ar most k,
and A S F finite with a elements. Then

#{ue A" 1(u) = 0} <kam!,

For randomly chosen ue A™ (with respect 1o the wuniform distribution) we have
Prob(r(u)=0) < k/a.
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5. REDUCTION TO BIVARIATE POLYNOMIALS

In this section, we present the model of computation to be used, and phrase
Strassen’s method [44 | of avoiding divisions so that we obtain an effective version,
suitable for our framework,

As mentioned in the Introduction, we use the notion of a computation (or
“straight-line program”) over Fu {x,,.., x,}u {+.=.*/}, which is formally
defined in Strassen [43]. Such a computation is a sequence ((t,, 4,),..., (t,, 4,)).
Each 7, is an operation, either t,e { 4+, —, *, /} and then 4,= (k, I) with 1 <k, I <1,
or t,e FU {x,,.,x,} and then A,= @. We call s the size of o, and there also a
natural notion of depth (= parallel time) of «. There are rational functions
S fi€ F(x ..., x,) associated in a natural way with a, and o computes f£.; in fact,
any subset of { f,,....f,}. We assume that no division by (the rational function) zero
is attempted. Throughout this paper, we assume that n<s; this is satisfied, e.g., if
all variables occur in a. ' ,

Each such « can be cncoded by an a=(y, B)e F*x {0, 1}* as follows:
B=(PB,.... B,) encodes s, n, each t, (with a special symbol for those 7,€ F) and 4,.
We can achieve this with 1= O(s log s). The vector P=1(}4 ¥,) € F* of constants
has

if 1,eF,

Hess 0 otherwise.

Based on the results of the previous section, we now present a probabilistic
polynomial-time reduction for computing the factorization pattern from mul-
tivariate to bivariate polynomials. The only restriction—that the ground ficld be
large enough —will be removed in Section 7. Since the input is a computation we
can view the algorithm as a “compilation” which produces another computation,
namely for a bivariate polynomial. Apart from arithmetic operations in F, the
algorithm uses tests “a=0?" in F, random choices from a finite subsel of F, and
Boolean operations.

ALGORITHM FACTORIZATION PATTERN.
Input:  An encoding @ of a computation as above of a polynomial
fe F[x,,.,x,], and a finite set 4 < F.
Output: Either the encoding «{s} of a computation a{z} for a bivariate
polynomial g=/{t} e F[x,, x,], or “failure.”
1. Choose t = (u, v, w)e A*? ? at random.

2. Compute the description {r} of a computation a{t} as follows. The first
Tn steps are such that /; =0 and Jonsj =X +v,x,+ w, for 3<j<n and the inter-
mediate results ;. For | <i<s, we have the step (t%,, ., 4%, . ,) with
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i T T TR
*

Timyi= "
ki T, otherwise,
(Tn+k, Tn+ D if A=k ND#3,
A ci={(6n+j, 1) if T, =X;,3<j<n,
A; otherwise.

3. Choose b= (h,, b,)c A? at random, and execute it} with input b, for X,.
If a division by zero occurs, then return “failure”,

THEOREM 5.1. Let a be a computation of size s for a polynomial [e F ISPy
of degree d, and A< F finite with a= # A. On input o and A, FA CTORIZATION
PATTERN returns in O(slog s) steps either “failure” or q description a{t} for a
computation of size at most 8s for a bivariate polynomial g e F[x,, x,] of degree at
most d. a{t} uses only constants Jrom y U A, where y iy the set of constants used by a.
With probability greater than 1 — (9% +2%)a, “failure” does not occur and gand |
have the same factorization pattern. In particular, with this probability g is irreducible
if and only if [ is irreducible.

Proof. By Theorem 4.5 and Fact 4.7, f and g have different factorization pattern
with probability at most 9/4. We estimate the probability of failurc in step 3. The
purpose of this step is to ensure that a{t} really is a computation in our sense, i.e.,
that no division f,=f, /f, with Jilt} =0 occurs. If failure occurs at a division step

Ji=Ixlf:, then
fi{t}p)=o.

One easily proves by induction on 7 that there exist polynomials p,, g, EFlX s X, ]
of degree at most 2'~! such that Ji=p:/q; [25]. Then p,#0, since « is a com-
putation, and we can assume that q,{1}(b)#0, since otherwise failure has occurred
at an earlier step. Then

Prob(f,{t}(h)=0) = Prob(p,{1} =0)+ Prob(p,{t} #0and p,{t}(b)=0)
sdegp,/a+degp,{t}/a<2'/a.
(We use the fact that p,e F[x,,.., x,] gives rise to a nonzero polynomial in

F[x,, x5, U;,..., W,].) Therefore, the probability that failure occurs in step 3 or the
factorization pattern of g is different from that of f'is less than

(9d°+ 5 ) Ja<(O® +2%)a. §
Ilsfcys !

Thus, c.g., if a2.2(’;’{9""'+2"'}, then we have a probabilistic polynomial-time
reduction from multivariate (o bivariate factorization pattern, with error
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probability less than 2~“ Producing a random element from A may seem a power-
ful step, and one might want to assume that such a random generation takes
O(log a) “random bit choices,” so that O(d” +s) such basic choices are required.
For convenience, we say that A4 is part of the input. In fact, we only need a
procedure to generate random elements of A. In characteristic zcro, we will often
have 4= {1,.., a}, so that the binary representation of a suffices to specify A. In the
sequel, we always consider 4 to contribute log(# A) to the input size.

The algorithm FACTORIZATION PATTERN is the basic computational result
of this paper. In the remainder, we discuss improvements and applications to
special cases. We first describe a variant—to be used below  of the algorithm that
employs Strassen’s [44] method of avoiding division. The algorithm as above
returns an encoding of a computation «{z} for g=f{t}eF[x,, x,], on which we
would then run a bivariate algorithm for factorization pattern. If we want to supply
the bivariate algorithm with a list of coefficients of g—which is usually required in
such algorithms —rather than just a computation, then there are (at least) three
probabilistic ways of achieving this:

. Run a{r} on d&° appropriately chosen valucs (@, a,), and use interpolation.
Here d=deg f, and it is assumed that no division by zero occurs in «{r} for these
values, '

2. Use Strassen’s method to make «{¢} division-free, and then compute all
homogencous parts (or even coefficients) of the bivariate intermediate results
separately.

3. Use Strassen’s mcthod to make x division-free, and then compute all
homogeneous parts of the intermediate results separately.

The last possibility gives rise to the following algorithm; see also [S, Remark 1].

A1LGORITHM DIVISION-FRIE CONVERSION,

Input: A computation « for a polynomial fe F[x,,..., x,] of degree d, and a
finite set 4 < F,

Output: Either “failure,” or another computation a* for f.

1. Choose b= (b,,...,. b,)e A" at random.
2. Execute o on input b, If a division by 0 occurs, return “failure” and stop.

3. (Comment: Now for every division f;=f./f, in a we have
c;=/fby,..., b,) #0, and

Ji=fllef1 —g))
= (fk‘fll(l."){l 5 g+g2 e +gd) Inﬂd[x| = bl Liddt ] x,r—-b")d+ I,
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where g =1—f/c,e F[x,,.., x,] with g(by,.... b,)=0. Each intermediate result can
be written as

ﬂ:Z( 2o kel =80 - (s an*’~),

Oy e fy"
el + o fey=j
' with fj, € F. The jth summand is the homogencous part of degree j of /, with respect
to x,—by,.., x,—b,; ie, in the Taylor expansion of f, around b.)

We have a computation «’ for f consisting of three phases. The first is the
calculation of ¢, ' = f(b) ' € F for each divisor f,. For the second phase, we replace
each operation in « by computations for each homogeneous part of degree at most
d with respect to x, — b,,..., x, — b,. This is clear for constants, and +, *. An input
x, has two homogeneous parts b, and x, - b, of degree 0 and 1, respectively. For a
division, we use the formula above, calculating each homogeneous part of each g’/
separately. In the third phase, we add the ¢4 1 homogeneous parts for the final
result,

4. (We now have a division-frec computation &’ which is homogeneous with
respect o the x;—b,.) Transform «' into a division-free computation o* in which
the first two phases are homogeneous with respect 10X ..., X4

PROPOSITION 5.2 (Strassen). Consider a description @ = (y, B) of a computation «
of size s for a polynomial fe F[x,,.., x,] of degree d, and a finite set A< F with
a=#4 as input to DIVISION-FREE CONVERSION. As output, the algorithm
produces either “failure™ or the description a* = (y*, B*) of another computation a*
of size O(sdlog® d) for f. a* has three phases: the first phase involves only constants
Jrom {3, 75} U A (and no inputs x,), the second phase is a homogeneous division-
free computation, and the third phase consists of d+ 1 additions. The conversion
procedure can be performed with O(sd log(sd) log’ d) bit operations and O(nlog a)
random bit choices. The probability of failure is at most 2%a.

The following algorithm is now obvious.
ALGORITHM DIVISION-FREE FACTORIZATION PATTERN.

Input: A computation o for a polynomial fe F[x,,.., x,] of degree d, where « is
division-frec and consists of three phases as a* in Proposition 5.2, and a
finite set A = F with a= # A.

Output:  FEither “failure,” or computations for cach coefficient of a bivariate
polynomial ge F[x,, x,].

1. Choose t = (u, v, w)e 4A*" 2 at random.

2. Replace x, by u; Xy +v;x,+w; for 3<j<n Replace each (homogeneous)
operation in phasc two of o by operations computing each of the coefficients of the
corresponding bivariate polynomial. Skip phase three.

3. Return the computations for the coefficients of g=f{t}eFlx,, x,]
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PROPOSITION 5.3. If a has size s, then DIVISION-FREE FACTORIZATION
PATTERN can be executed in O(sd® log® dlog(sd)) bit operations and O(nlog a)
random bit choices. The computation for each coefficient of g has size O(sd? log* d).
With probability greater than 1 — 9"2/a, [ and g have the same factorization pattern.

Remark 54. The conversion to a division-free computation assumes that we
have an upper bound d on the degree of the result £, We can obtain a probabilistic
estimate ¢* for d as follows. We choose u, ..., u, randomly from a large finite
subset of F, substitute u,x, for x; (i>2), and compute the result re F for Xy =it
Fore=1, 2,.., we perform DIVISION-FREE CONVERSION for this computation
a*, expanding around x, — u, and truncating modulo (x, —u,)**". We then execute
the resulting univariate computation for x, = u, to obtain a result r.€F, and let d*
be the first valuc of e for which r,=r. Then d* <d. Furthermore, d=d* with
probability at least 1 3-2%a. (The reduction to a univariate computation is
actually not necessary, but simplifies the procedure.)

Can we also obtain a “fast parallel version” of the reduction? “Fast parallel”
should mean depth (=parallel time) polynomial in log(input size), with
simultaneously polynomial size. Unfortunately, this seems in general impossible for
both the conversion algorithm and the converted computation af{t}. If z is an
indeterminate over an infinite field F, then any computation of z2", given z as input,
takes parallel time 2(m) [25]. Thus, e.g, if @ = F and z e F is transcendental over
Q, « might have z as input and compute z*" for m=s/2. In this case, the validity
test in step 3 of FACTORIZATION PATTERN, the converted algorithm «{r} and
the constant phase of «* (as in Proposition 5.2) all take parallel time Q(s).

However, it is quite reasonable to consider computations that use polynomial
time to compile their constants, and then poly-log depth to perform the com-
putation depending on the inputs. By the general parallclization method of [47],
the second and third phase of a* can be performed in depth O(log s log(sd)) and
size O((sdlog? d)*).

PROPOSITION 5.5. Let o be a division-free computation of size s and depth r for a
polynomial € F[x,,..., x,] of degree d. There is a probabilistic algorithm that outputs
either “failure” or a list of the coefficients of a bivariate polynomial g. With
probability greater than | — 2%, “failure” does not occur and g and [ have the same
Jactorization pattern. The algorithm can be performed in depth O(rlog* d) and size
O(s°d®).

Remark 5.6. The present method also allows us to obtain a different type of
“factorization pattern”

(dll Lt dlna 3} P drl g pasy drn-r er)!

where f=/f$--- f* is as in Definition 4.4, and d;; is the degree deg, f; of f; in x,.
Kaltofen [23] first showed how to compute this pattern.
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To apply our methods, we let n24, 4 < F be finite and large, 1€ 4%~ 2 be a
substitution, and we assume that g=f{r} has the same factorization pattern
(Definition 4.4) as f. We compute a factorization g = g4 - - g% of g. We consider the
unique factorization of f as above such that f{r} is a scalar multiple of g,. Also, let
Z;=u;X1 +v;x, + w;€ F[x,, x,]. For 3<j<n, we compute a factorization of

hj=f(x1 » X2y L340 Zj—1s X, zj+1;-u; Z,,}EF[.‘(“ Xa, )CJ,-].

Since h(x,, x5, z;) = g, each irreducible factor of h, becomes a scalar multiple of a
unique g, under the substitution x;=z,. This sets up a bijection between the
irreducible factors {h,,... h,,} of h, and {g,...,g,} with h,(x,, x,, z,) = g,, and with
high probability we have

dy=deg, f;=deg, h

ij*

In order to calculate d,,, we assume that

M:(u3 U3)CF2><2

u, U,

is invertible. For randomly chosen u; and v, this happens with probability at least
1—2/a by Fact 4.7, where a= # A. Let

X3— W4

_szw_:+("".f= ”J)'M g ( )EF[X3. .k’4]

X4— Wy
for 5<j<n, and
X1 —W
_}'2:{0,1)‘M_l'( 2 3).
Xa— Wy
We compute a factorization of

by =f(X1, Y25 X3y Xay Yssris Vo) € FLX1, X5, %4 ).

Then h,(x,, z3, z4) = g, and again this substitution provides a bijection between the
irreducible factors of 4, and those of g. If A, corresponds to g, under this bijection,
then with high probability

d, =deg, fi= deg,, h;.

Similarly, we obtain d,,,..., d,,.

We note a difference between the algorithm DIVISION-FREE FAC-
TORIZATION PATTERN and“the one of this remark. The former is a
probabilistic reduction from multivariate to bivariate polynomials for the problem
of computing the factorization pattern, but for the latter, we actually have to factor
trivariate polynomials. Given the factorization of g, it is easy to compute the fac-
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torizations of the trivariate polynomials by a (dense) Hensel lifting. On the other
hand, the known methods even for testing bivariate polynomials for irreducibility,
say over @ or a finite field, all require to factor some (at least univariate)
polynomial.

6. AL.GEBRAIC NUMBER FIELDS

Proposition 5.3 provides an efficient random computation for the factorization
pattern of multivariate polynomials over those fields where the factorization pattern
of bivariate polynomials can be computed in polynomial time. Such computations
usually make use of a factorization procedure, at least for univariate polynomials.
The prime examples are the prime fields @ [32, 22] and Z,[3,11,29]; [6] deals
with the general case of fields finitcly generated over their prime fields. We now
consider algebraic number fields—where the most interesting case is the field of the
rational numbers—and defer the case of finitc fields to the next section. As an
auxiliary result, Corollary 6.9 presents a probabilistic polynomial-time simulation of
computations by Boolean circuits.

So let F be a number field, presented as F= Q[z]/(h) with e Q[z] irreducible
of degree m. We assume throughout this section that 4 has integral coefficients and
is monic. It is easy to convert the general case to this special situation. A standard
representation of an element b € F (with respect to the given minimal polynomial 4)
consists of the binary representations of ry,..., r,, € Z, where

(;-=L > e

Fm O<j=m

r»#0, and y=zmod A is a generator for F over Q.

Now let « be a computation over Fu {x,,.,x,}, computing a polynomial
feF[x,,.,x,] of degree d FACTORIZATION PATTERN applies to I” in a
straightforward way. However, we want to apply a bivariate factorization algorithm
to the resulting g F[x,, x,]. Such algorithms require g to be given by a list of
coefficients, so that we have to perform DIVISION-FREE CONVERSION. Step 2
of that algorithm evaluates « at a specific input. We first have to present a
probabilistic polynomial-time algorithm for this evaluation. Rather than counting
arithmetic operations in F, it is now more relevant to count bit operations.

In terms of arithmetic operations, the (sequential) complexity of evaluating a
polynomial is well studied. When we count bit operations (say, on a Turing
machine or a Boolean circuit), it is surprising that no polynomial-time algorithm is
known to evaluate a polynomial over @ given by a computation. This problem is
non-trivial even for specific polynomials like the determinant, if we consider it as
given by a program for Gaussian elimination: Edmonds [ 7] gave a solution in this
case.
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We want the number of bit operations to be polynomial in the input plus output
size, 1.e., the lengths of representations of the computations, the input values, and
the output value. The problem is that intermediate results may have more than
polynomial length. This is illustrated by the trivial example of a computation of
length 5, using the constant f,=2, computing f, ;=2 "' and having
fs=f—ilfs-y=1 as output, independent of the input. We will use the rather
obvious approach of computing modulo a prime p. Now the problem is that one
might have a similar example of a computation as above, but with /,_, being
divisible by “all small primes,” so that the last division step fails modulo p. (See
[40] for a computation of (2*)! in size O(s), using division with remainder.)
However, we obtain a probabilistic polynomial-time algorithm for evaluating a
computation for a polynomial, by computing modulo a randomly chosen large
prime.

DEFINITION 6.1. If « is a computation over F, then in a standard representation
&=y, f#) of x every constant y,¢ F has to be given in standard representation. The
length /(%) is the maximal binary length of the integers occurring in d.

In particular, for
h=z"+h, 2" '+ - +hyeZ[z]\{0}
we have

I(h)<log max |Aj+1,

=j<m

and for b=1/r, 20 cj<ml;y' €F with r,eZ, r, #0,

I(h) < Iog max |r|+ 1.

Ngjsm

Also, when b= (..., h,)e F', we use /(h)=max, .., (). Even when m= 1, we
do not require in a standard representation two integers ry, r, (representing
ro/r; € Q) to be relatively prime, and therefore /(x) depends not only on «, but on
the particular representation given. In our algorithms, we assume inputs a, 4, b to
be given in a standard representation, and then write /(x), I(h), I(h) referring to the
length given by that particular representation.

DEFINITION 6.2. Let o be a computation over FuU {x,,.., x,}, and he F. If on

execution of « on input b no dmszon by zero occurs, then we say that a is defined
at b.

Remark 6.3. In Proposition 5.2, we have noted that for a random he 4" with
#A=a, a is defined at b with probability at least 1 —2%/a.
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Note that all intermediate results f; € F(x,,..., x,) of « may be defined at b, but yet
o is not defined at b. An example is =0 and a=((x,, &), (/, (1, 1))), so that
h=x, hi=x/x,=1

Given integers p, r, 1, g, ¢’ with |r'|, |¢'| <p/2, q, ¢ #0, r'=rmod p, and
q'=gmod p, we call (+,¢’) a mod-p-representation of r/ge@. For the following
algorithm, we use some Monte Carlo test for compositeness of numbers, e.g.,
Solovay and Strassen [41]. On input an integer p and a confidence parameter
7>0, it can be performed in O((log p)>** log(1/y)) bit operations for any £>0.If p
is prime, it returns “p is prime.” If p is composite, it returns either “p is composite”
or “p is prime”; the latter with probability at most y. The exponent ¢ really only
hides logarithmic factors (in log p). To simplify notation in the sequel, we introduce
the following abbreviation.

DEeFmNITION 64. Let s, 1: N — R ; be functions. We write s = O*(¢) if and only if
there exist k&, me N such that

Yn = m, s(n) < t(n)- (log(2 + t(n)))~.

The purpose of the summand 2 is to make the logarithm always at least 1, so
that, e.g., s = O0*(r) for the constant functions s(n) =35, t(n)=1.

ALGORITHM POLYNOMIAL TEST.

Input:  The coefficients of an irreducible monic polynomial he Z[z] of degree
m such that F=Q[z]/(h), a computation « for a polynomial
feFlxy,..,x,]), and b= (b,,.., b,) € F", with b, ..., b, and the constants of
o in a standard representation, and a confidence parameter 6, 0 < 6 < .

Output: Either “failure,” or “a is defined at 5.”

1. Set R=1+I(h)+Ua)+I(b)+logm, T=(3/5)s’m’'R, N=2Tlog T, and
t=[2-log N-log(3/6)7]. Choose independently integers p, ..., p, with 1 <p, <N at
random, and run a Monte Carlo compositeness test on them, with confidence
parameter d/3. Let p be the first p, for which “p; is prime” is returned. If always “p,
is composite” is returned, then output “failure” and stop.

2. Execute o on input b. Maintain a mod-p-representation for the inter-
mediate results. If a division by zero occurs, then return “failure” and stop.

3. Return “x is defined at b.”

ProPOSITION 6.5. Let h, a, b, 6 be an input for POLYNOMIAL TEST, s the size
of w, m=deg h, and k = max{s, m, l(h), (), I(b), log(1/0)}. Then the algorithm can
be performed in O*(k®) bit operations. If « is not defined at b, then “failure” is
returned. If o is defined at b, then “u is defined at b” is returned with probability at
least 1 — 6.
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Proof. Denote by f,,.... f,€ F(x,,.., x,) the intermediate results of «. We consider
a standard representation (r,,..., 7,,) (with respect to /) for each intermediate result
fi(b), for which no division by zero has occurred, where each ry€Z, and

f-"[b)‘_-i Z r{;}’jEF-
mMO<j<m
(In step 2 of the algorithm, we compute representatives r;; of r, mod p, with rj;e Z
and [rj| <p/2.) We can find these standard representations for f,(h) along the
algorithm in the obvious way. If, e.g., /;=/ * f; is a multiplication step in «, then
Tigsens i1 € Z are obtained by dividing

O<j=m Osj<m

by h with remainder. Since 4 is integral and monic, this remainder is integral. Also
Tim="Tim ' I'im- An addition step is treated similarly, and inputs and constants are
trivial. Il f;=f,/f, is a division and f,(h)#0, then we use an inverse of > ryz!
modulo h, as calculated, e.g., in the extended Euclidean algorithm of [1, Chap. 8],
and remove common factors from r,, and the coefficients of this inverse. To get a
bound on the size of the intermediate results, we consider the system of 2m — 1
linear equations corresponding to

Sy B onp= T gt T gk

O=j<m O<j<=m Oj<m Osjsm 2

in 2m — 1 unknowns y;, g;. This system has a unique solution, and we let r* be the
determinant of the coefflicient matrix. We set

rE =y r¥) r, for O0<j<m,

and ri, =r¥*r.,. Then, if (ry,.., r,,) is the representation for f,(h) computed above,
we have r, <r} for all j. Now let

M[ - max{gfm. zr(m},
M= (m2! TiRymi=1) prm=! for 2<i<s.

We first prove that |r,| <M, for | <i<s and 0<;<m, by induction on i. The
claim is clear for i= 1. For the induction, we consider a division step f, = f, /f;; the
other operations are checked similarly. We have to solve a (2m—1)x (2m — 1)-
system of linear equations, and know that

Iryls lrel < M, .
Cramer’s rule and Hadamard’s inequality imply that

Irur < Ir: < (2m}m;’2 M:"_ 1(2m}tm—1}f2 2-*“1! (m—1) < (ZmZHHM, : l}m

Il
5
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Before we estimate the failure probability, we have to specify how to “keep all inter-
mediate results in mod-p-representation” in step 2. With r, e 7 as above, we simply
maintain representatives r; € Z of rymod p with |ry| <p/2, and calculate r}; from Yigs
ry as indicated above. We assume now that « is defined at b, and consider the first
failing division step f,=f,/f,. Then f(b)#0, hence (ry,.... 7;_)#(0,.., 0), and
J{b)=0mod p, so that p divides each of ry,..., r,,_,. Let

P={peN:2<p<Nand pis prime},
so that

N N

P=mn(N)= e
# oL log, N~ log N

for N> 17, by the prime number theorem of Rosser and Schoenfeld [36]. (“log”
without subscript always stands for “log,.”) Let

Q={pePiry="" =r,,_ ,=0mod p for some division step f,=/,//;}.

For each divisor f; as above, there exists a j, 0<j<m with r,#0 and |r,| <M,
Therefore

#{peP.p|ry}<logM,,
#Q<s log M, <s(ms(1+1(h)+logm)+m' 'log M,)<s’m'R.

Furthermore we have

N 2Tlog T

- ; L]
log N log(2T log T)

since 7’22 log T for T = 4. Together we obtain

Prob(failure) < Prob(p, ..., p, are composite) + Prob(p is not prime) + # Q/# P
g(N— #P) ob leogN

+=tsm

N 3 N
<(1- 1 )*+5+a
h log N 33
20 ke 28
tlog N | =7 -~ o 51 =
<e +3:~<‘3+3 d.

For the timing estimate, we know that an operation (addition, multiplication,
division with remainder, computing a modular inverse) on i-bit integers (resp.
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polynomials with rational coefflicients of degree at most i) can be performed with
O*(i) bit operations (resp. operations in @) ([1, Chap.8]. In step 2, each inter-
mediate result is represented by integers of at most log N bits, and one operation
(+, —, *, /) mod h can be performed in

SR

O*(mlog N)=0O* (m log 5

+ sm log m) =0*(k?)

bit operations, giving total cost O*(k’) for step2. The cost for step 1 is
O*((log N)°(log(1/8))?) or O*(k*). 1

Note that even if p is not a prime and “x is defined at b” is returned, then this is
the correct output,

We now have the required random polynomial-time version of Strassen’s
division-free conversion.

ALGORITHM DIVISION-FREE CONVERSION OVER A NUMBER FIELD.

Input:  The cocfficients of a monic irreducible polynomial he Z[z] of degree m
such that F=Q[z]/(h), the description @ of a computation x for a
polynomial fe F[ x,,..., x,, ] of degree d, and a number ae .

Output: Either “failure,” or another computation «* for f.

1. Set A={1,.,2a} =N<F, and choose he A" at random.
2. Call algorithm POLYNOMIAL TEST with input 4, o, b, and 6 =2"""'/a.

3. Execute steps 3 and 4 of Algorithm DIVISION-FREE CONVERSION on
input «, b, and output o*,

PROPOSITION 6.6. Let h, a=(y, B), d, a be an input for DIVISION-FREE CON-
VERSION OVER A NUMBER FIELD. and s the size of the computation «. The
algorithm outputs either “failure” or a computation «* for f. «* has size O(sdlog? d),
and consists of three phases: the first phase involves only constants from
{Vis Vst UN (and no inputs x,), the second phase is a homogeneous division-free
computation, and the third phase consists of d+ 1 additions. Let

k =max{s, d, m,log a, l(h), [(x)}.

The conversion procedure can be performed with O*(k>) bit operations and O(n log a)
random bit choices. The failure probability is at most 2*/a.

Proof. The failure probability is <2'/2a+d=2"/a, using Remark 6.3 and
Proposition 6.5. Since /(h) and log(1/6) are O(k), the number of bit operations is
O*(k”) in step 2, and O*(k?) in step 3. ||

Algorithm POLYNOMTIAL TEST runs in random polynomial time (in the input
size) and almost evaluates a computation, namely it computes the value modulo a
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large prime. We cannot expect such an algorithm for actual evaluation, because the
output sizc may be more than polynomial in the input size. However, if we take the
output size into account, we do get a random polynomial time procedure for
evaluation. If

1 :

ViR B Fely gt g
m el
U=j<m

with f;, f,,€ Z, then the maximal binary length L(f) of any of the £, f,, is called
the length of (this representation of) /.

Remark 6.7. We only allow one denominator /,,, since otherwise for

1
f=) —xji-x2eQx,.., x,]

eesM" Fe

of degree d, where p, runs through the first ("+4) primes, the length of f(1,.., 1)
might be exponential in the length of the representation. (The restriction may
actually not be necessary, since it is not clear that computations of small size can
compute such polynomials.)

ALGORITHM POLYNOMIAL EVALUATION.

Input:  As for POLYNOMIAL TEST, and L(/f), and the degrees d and m of f
and A resp.
Output:  Either “failure,” or f(h)e F (in standard representation).
I Set B=L(f)+2d(n+ 1) I(b)+ 2dm log(dm) + dmi(h).
2. Call Algorithm POLYNOMIAL TEST. In step 1 of that procedure, set
C=B+[log((6slog? N)/é)], and make the following changes: Use the value
1=[2-(2C+1+log N)-log(3/8)7, and choose independently integers p; ..., p, with

22(‘ +1 {P,-&:sz(-+ I_

3. Return the computed mod-p-representation of f(b).

PROPOSITION 6.8. Let h, a, b, 6 be an input for POLYNOMIAL EVALUATION,
S the size of a, and k=max{s, d m, L(f), l(b), I(h), la), log(1/5)}. Then the
algorithm can be performed in O*(k'") bit operations, and [(f(h))<B. If a is not
defined at b, then “failure” is returned. If o is defined at b, then the failure probability
is at most d. ;

Proof. We first show that I(f(h))< B<C. Then, if (r, g) is the mod-p-represen-
tation of f(b), in fact we have /'(h) = r/q. Write
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1 :
f== E fex'ij‘l“'“xfw'>
m ec "
O=j<m

b - (b] geuts bn)1

1 '
bi’ = r Z br}' yjs

moj<m

with f;, f., by€ Z. For any ee N" with e, + -+ +e, < d, define

Hf=( Z bljz'!)e'l”.( z bnjzj)rnsz[z]s

OD=j<m O<j<m

so that u, mod h=(b,,,b,)" - (b,,b,)". When the product for u, is multiplied out,
there are at most m‘ summands ¢, each with /(c)<d-I(b). It follows that
l(u,) < dlog m+ di(h). For any ee N", we next define

ve= Y, Sfy2’bi e bl mu,el[z],

O<si<m

v= Y v.eZ[z];
eefn
then

(v,) <log m+ L(f)+ dnl(bh) + I(u,)
S L(f)+d(n+1)I(b) + (d+ 1) log m,

+d
l(v)<log (n : ) + max /(v,)

sdlogn+ 1)+ L(f)+d(n+1)I(b)+ (d+ 1) log m,
degv<(d+1)(m—1),

’ I .
f(b) =‘m “(vmod h)e F.
The coefficients wg,.., w,, ; of vmod h=) w,y’€ F can be computed by solving a
system of at most (d+ 1)(m — 1) linear equations, with each entry of the coefficient
matrix having length at most /(h), and cach entry of the constant side of length at
most /(v). Using Cramer’s rule and Hadamard’s inequality we obtain

l(w)) < I(v) + dm log(dm) + dm I(h)

S L(f)+2d(n+1)I(b)+2 dm log(dm) + dm I(h) = B,

and thus /(f(b)) < B. *

For the timing estimate, we first note that log N is O*(k), B and C are O(k?),
and ¢ is O(k*). Set D=2?“*'. A random prime number as required can be chosen
in O(z-log(ND)) or O(k’) random bit choices, and O*(r(log(ND))? log(3/5)) or
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O*(k'") bit operations. The cost for onc operation mod / is now O*(m log(ND)) or
O*(k*), giving total cost O*(k*) for step 2 of the call of POLYNOMIAL TEST.

For the estimate of the failure probability, let n(x) be the number of prime num-
bers between 2 and x. By the prime number thcorem in Rosser and Schoenfeld [36,
Corollary 1], the fraction corresponding now to (N — # P)/N satisfies for C>1 and
N = 15 the following:

ND 2D
n(ND)—n(D) _Tog(ND) _iog D
ND D D(N—1)

Z(N-2log N)/((N—1)log(ND))=(2:(2C+ 1 +1log N)) ..

Thus again the probability that p,,..., p, are composite is at most §/3.
It remains to estimate the failure probability under the assumption that « is
defined at b and p is indeed prime. We can assume that € > 12, and first note that

5 log’ N | 204102 1
%5‘(5, o8 2C+1)

N 2 1
E= - = 1
log(ND) log D~ log(ND)

By the argument given above, /(r;)< C <log(ND) for every intermediate result
r;€ F of o on input A. Thus for

Q= {p: D<p<ND, pis prime, some division in & on
input b fails modulo p},
we have
#0Q <slog(ND).
Thus

slog(ND) (slog(ND]
n(ND)—=n(D)~ DE

s log*(ND) s (2 log? N+ 2(2C +1 }’)

2C+1 2("l'1_

Prob(failure) <

M

2(‘ 2C+l

0BT @

COROLLARY 6.9. Computations over algebraic number fields can be simulated by
probabilistic Boolean circuits with size polynomial in the input and output size.

N
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It is clear that also “probabilistic computations” over algebraic number fields can
be simulated, e.g., Las Vegas computations that make probabilistic choices from a
finite set 4 =Z = F and either return the correct function value or “failure.” Then
log(max A) will enter the probabilistic Boolean simulation time.

The main result of this section is the following random polynomial-time
algorithm for the factorization pattern over number fields.

ALGORITHM FACTORIZATION PATTERN OVER A NUMBER FIELD.

Input:  The coefficients of an irreducible monic polynomial he Z[z] of degree m
such that F=Q[z]/(h), a computation « of size s for a polynomial
feFlxy,...x,] of degree d, and L(f).

Qutput: Either “failure,” or the factorization pattern of f.

1. Call procedure DIVISION-FREE CONVERSION OVER A NUMBER
FIELD with input 4, o, d, a=2"(9% +2°), and output a*.

2. Call procedure DIVISION-FREE FACTORIZATION PATTERN with
input a* and 4 = {1,.., a} =N = F. Output is a computation a, for each of the (“1?)
coefficients g, € F of a polynomial g e F[x,, x,], with degree at most d.

3. Set B=dlog(n+ 1)+ L(f)+2d(n+1)loga+ 2 dmlog(dm)+dmli(h). For
all 7, call procedure POLYNOMIAL EVALUATION with input A, a; for g,e I
with n=0, 6=2 " L(g,)=B, d, m, to compute the standard representation of
each coefficient g,. (No input b is required.)

4. Apply a factorization algorithm for bivariate polynomials to g, and return
the factorization pattern of g.

TueoreM 6.10.  Consider an input h, o, f for the algorithm. Let m = deg h, and
k=max{s, d, m, l(h), (), L(f)}.

Then the Algorithm FACTORIZATION PATTERN OVER A NUMBER FIELD
can be executed with O*(k*°) bit operations. With probability greater than 1 —2
it returns the correct factorization pattern of f. Furthermore, L(g)< B.

Proof. By definition, L(g;) < L(g), and we first estimate L(g). We write f with
integer coefficients f,,, f,, as usual, and let

F*=f(x;, x0, Usx + Vixy+ Wa, Upx + Voxa + W)

| i 3
5 Jy€1y-€2 . . : S W
__Lf‘t'j ¥ J‘?‘xé ( U'\A’ p V]"'?. -+ WB }‘ ‘ ( l}nxl 57 Vn X3z + Wu}f

My g

I .
= )‘_ Z g4 ’_Y‘fl.xgz[fg” i Uf:“' Vg‘za el ng,, wt_’;jj ot Wﬁ}”

S e W x pdn-2)
O<f<=m
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with g, e Z. Each g4 15 the sum of at most ("%¢) summands [+ and therefore

L <tog (") + L0 < dogtn 1)+ 1)

Since g=/*(us,..., u,, Vy,0, U, W3,y w,,) and luj,..., w,)<loga, we have by
Proposition 6.8 that

L(g) < B=0(k")

Step 1 can be executed with O*(k'") bit operations by Proposition 6.6, and step 2
with O*(k*) operations; this step is formal and does not involve actual calculation
with elements from F. For the output of step 1, both /(x*) and the size of a* are
O(k*). If we denote by s, d,,... the parameters in the ith call of POLYNOMIAL
EVALUATION in step 3, then s,= O*(k*), d,=I(b,) =0 (since each g, 1s constant),
m;=m, L(g)=0(k>), I(a,)=0*Kk?>), h,=h, log(1/6)=0(k>). Proposition 6.8
yields the estimate O*(d’k**) for step 3. The estimate of Lenstra [30] gives a bound
of O*(k™) bit operations for step 4.

The failure probability is less than 2*/a in a step 1, and the correct factorization
pattern is computed with probability at least 1 —9%/a. |

Remark 6.11. A more careful look at the proof of Proposition 6.8 shows that
steps 1, 2, 3 can be performed in O*(k'®) bit operations.

We do not get a fast parallel algorithm over number fields, since even for
univariate factoring (or irreducibility testing) over @ no fast parallel algorithm is
known. (See [9] for a discussion.)

7. FIELD EXTENSIONS AND FACTORIZATION

The factorization pattern algorithm for multivariate polynomials in Section 5
assumes that one can make random choices from a sufficiently large finite subset of
the ground field. This may not be possible over a small finite field. In this section
we prove that one can make arbitrarily large algebraic extensions of a field without
changing the factorization of a given polynomial. This allows us to apply the
algorithm also to small finite ficlds.

TuEorEM 7.1. Let F be an arbitrary field, f€ F[x,,..., x,] of total degree d, and
F< K a finite algebraic extension of degree m such that ged(m, d)= 1. Then

(1) firreducible in F[x,,..., x,]<f irreducible in K[x, ... x,].

(ii) If each prime factor of m is greater than d, then f has the same fac-
torization pattern over F and K.

Proof. We will use a classical notion, the norm N =N, ,: K- F of the given
field extension. For any n>0, we also have a mapping N: Klxyy x,] =
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F[xy,.., x,]. If, e.g., K= F(a) is separable over F, m= [K: I"], L2 K a splitting field
of the minimal polynomial of a over F, and a, =4, a,,.., a, e L are the conjugates
of a over F, then

N(O 2 f,-ea"xf)= I ( b2 _/}Pa};x”),

si<m l=ksm \0=i<m
ee M ee N7
where f. € F. (Actually, this N is nothing but N gixtxnyFie. xgy+) N is multiplicative,
deg N(g)=mdegg, and if f& F[x,,..., x,], then N(f)=/". (See, e.g., [51, Chap. II,
Sect. 10].)
In proving (i), the implication “<" is clear. So let f be irreducible in Flxyo el
& he K[x,,.., x,] with f=gh, and k = deg g the total degree of g. Then

S"=N(f)=N(g) N(h)
implies that N(g) =" for some /, 0 </<m, and
dl=deg N(g)=km.

Now from ged(m, d)=1 it follows that m divides /. Thus either I=k=0, or else
I=m, which implies k =d and f=g. In either case. the factorization is trivial (11)
follows immediately from (i). ||

Using this theorem, it is now easy to put the reduction of Section 5 to work over
a finite field F. In order to compute the factorization pattern of a bivariate
polynomial g of total degree at most & as output by DIVISION-FREE FAC-
TORIZATION PATTERN-—we use the probabilistic factoring algorithm
BIVARIATE FACTORING from [117]. It either returns the correct factorization of
g or else “failure.” The latter happens with probability at most 2 ¢,

ALGORITHM FACTORIZATION PATTERN OVER A FINITE FIELD.

Input: A computation « over a finite field F with ¢ elements, computing a
polynomial fe F[x,,.., x,] of total degreed.

Output:  Either a factorization pattern, or “failure.”

1. Set a=22942%). If g>a, then set K=F and g0 to step 3. Else set
m=max{d, log, a}, and choose a prime number / with m < /< 2m.

2. Choose monic polynomials 4., hg, € F[z] of degree / at random, and
test them for irreducibility. If none is irreducible, return “failure” and stop.
Otherwise, let /i be the first irreducible 4, and set K = FLz]/(h).

3. Call Algorithm DIVISION-FREE CONVERSION, and then DIVISION-
FREE FACTORIZATION PATTERN with input o computing fe K[ x,,.., x, ],
and some A< K with # 4 =a. Evaluate the resulting computations for the coef-
ficients of g=f{1}.
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4. Run a bivariate factoring algorithm over K on the output g of step 3.
Return the factorization pattern of g (or possibly “failure”).

THEOREM 7.2.  Let I be a finite field with g elements, and « a computation of size
s over I computing a polynomial f€ F[ x,,..., x,] of total degree d. On input o, FAC-
TORIZATION PATTERN OVER A FINITE FIELD outputs the correct fac-
torization pattern of f with probability greater than 2 “. Let k=max{s, d, log ¢}.
The algorithm can be performed in O(k'*) bit operations, and O(k°®) random bit
choices.

Proof. There are exactly (¢’ — ¢)/I irreducible monic polynomials of degree / in
F[x] (this is already in Schonemann [37, Sect. 46]), so that step 2 has failure

probability at most
i Bl Bid
Gind I —2d _.q—2d
l————] <(l—-=] <e <2
( lq' ) ‘“( 2!') "

We run the bivariate factoring algorithm in step4 of FACTORIZATION PAT-
TERN twice to obtain failure probability at most 2%/, Using Propositions 5.2 and
5.3, it follows that the factorization pattern of f is computed with probability at
least 274

For the timing estimate, first note that a prime number / as required exists by
Bertrand’s postulate [36, Corollary 3]. We can compute such an / deterministically
in O(m*? log? m) bit operations. Step 2 uses O(/’dlog® I log log I log ¢) or O*(k7)
operations in / [35]. One arithmetic operation in K can be performed in O*(/) or
O*(k?) operations in F, and thus with O*(k?) bit operations. The two procedures
called in step 3 work in O*(k’) operations in K, or O*(k®) bit operations. The
bivariate factoring algorithm over K works in O(d” log?(¢')(d” + log d log(q'))) or
O(k') bit operations and uses O(dlog dlog(q')) random bit choices. Step 2 uses
O(/’dlog q) random bit choices. |

We also obtain a parallel version of the algorithm. For general computations, we
cannot expect fast parallel evaluation, only polynomial-time transformations (as in
Proposition 5.5) that yield special computations which can be evaluated fast in
parallel. Therefore we now assume that the input is a computation of depth r, and
look for a factorization pattern algorithm with depth polynomial in r.

We use the parallel bivariate factoring algorithm from [117]. The algorithm has
to be performed in the field K constructed in step 2 of FACTORIZATION PAT-
TERN OVER A FINITE FIELD. For factoring f{¢}, one may have to extract pth
roots of clements of K, where p = char K. This can be performed by Boolean circuits
of depth O(log” e + log p) and size (e-log p)?"), if #K=p [8,12].

COROLLARY 7.3. Let F, q, a, s, f, n, d, k be as in Theorem 7.2, p=char F, g = p*,
and r the depth of o. Then the factorization pattern of f can be computed with a
Boolean circuit of depth O(log® k(r +log p)) and size k).
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Proof. We only estimate the depth of the required Boolean circuits. Step 1 can
be performed in depth O(log® m). For step 2, we use a deterministic version of the
parallel irreducibility test in [9, Sect.4], which works in depth O(log?(el)
log p log? log p). The evaluation in step 3 of FACTORIZATION PATTERN OVER
A FINITE FIELD can be performed in depth O(r log? d(log log ¢4)?). The bivariate
factorization algorithm can be implemented on a Boolean circuit of depth
O(log? dlog*(del) log p(log log g)*). 1

8. FORMULAS AND SPARSE REPRESENTATIONS

The results of the previous sections simplify somewhat when we restrict ourselves
to the cases where « is a formula or a sparse representation. As usual, « has size s
and computes f€ F[ x,,.., x,] of degree d, and 4 < F has a elements.

THEOREM 8.1. There are two modifications of Algorithm FACTORIZATION
PATTERN, which on input of a formula w, output either “failure” or a formula oft)
for a bivariate polynomial g =f{t}.  With probability greater than 1 — (94 + 2°)/a,
“failure” does not occur and g and f have the same factorization pattern. In particular,
with this probability g is irreducible if and only if f is irreducible.

(1) (Sequential version) The first modification can be performed with O(s)
steps, and o{t} has size at most 8s.

(i) (Parallel version) The second madification can be performed with 0fs'9%)
steps. The size of a{t} is O(s), and the depth of a{1} is O(log s).

Proof. (i) In a, the algorithm simply writes u;x, +v;x,+w, for each x; with
I<jsn

(ii) A construction for «{¢} is given in [33] with the compilation time O(s%),
where & =1/log, 6 =1.44..., and = (1+./5)2. |

THEOREM 8.2, There are two modifications of algorithm FACTORIZATION
PATTERN, which on input of a sparse representation a, output either “failure” or a
sparse representation wi{t} for a bivariate polynomial g=f{t}. With probability
greater than 1—9%/a, “failure” does not occur and g and [ have the same fac-
torization pattern. If f is reducible and “failure” does not occur, then g is reducible.

(1) (Sequential version) The first modification can be performed with Q(sd”)
steps, and a{t} has size O(d?).

(ii) (Parallel version) The second modification can be performed with
O(sd* log® d) steps, and depth O(log® d+log s). The size of aft} is O(d’), and the
depth of a{t} is O(log d).
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Proof. (1) Write f=3, nn fX{' - - x¢ with f,e F. For cach ee N” with £, #0,
we have ¢, + -+ +e,<d, and

Jex§xP(usx + 03X, 4+w3)? - (1, %, +v,x, + w,)"e Flx, x;]

is a polynomial of degree at most d and is (densely) represented by its f,=(7%2)
coefficients. (For bivariate polynomials, the dense and sparse representations have
polynomially related lengths, and we do not distinguish between the two.) Each
coefficient can be computed with 6df,= O(d") operations in F. Thus the sparse
representation of g can be computed with 7df,s = O(d’s) operations in F. We can
read deg g from this representation of g, and return “failure” if deg g < deg /. We are
then guaranteed that g is reducible if f is. By Theorem 4.5 and Fact 4.7, the fac-
torizajleiion patterns of f and g agree and degf=degg with probability at least
1—9%/a.

(ii) The coefficients of the product of two bivariate polynomials of degree at
most d can be computed in size O(d*) and depth O(log d). The claim now follows,
using the algorithm from (i). It is clear how to evaluate a sparse representation fast
in parallel. |

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the many conversations I had with Erich Kaltofen about the factoring
problem, and the numerous improvements and corrections he contributed. Thanks also go to the referees
for various helpful suggestions.

REFERENCES

l. A. V. Ano, J. L. Hopcrorr, anp J. D. Uriman, “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, Reading, Mass., 1974,

2. E. R. BerLekamp, Fucloring polynomials over finite fields, Bell System Tech. J. 46 (1967),

1853-1859.

. E. R. BERLEKAMP, Facloring polynomials over large finite fields, Math. Comp. 24 (1970), 713-735.

4. E. Bertin, Sui sistemi lineari, Rend. Reale Istit. Lombard. 15 (1882), 24-28.

5. A. BoroniN, J. voN zZUR GATHEN, AND J. HOpCRrOFT, Fast parallel matrix and GCD computations,
Inform. and Control 52 (1982), 241256,

6. A. L. CHistov anp D. Yu. Grigoryrv, “Polynomial-time Factoring of the Multivariahle
Polynomials over a Global Field,” LOMI preprint E-5-82, Leningrad, 1982,

7. J. EpmonDs, Systems of distinct representatives and linear algebra, J. Res. Nat. Bur. Standards TIB
(1967), 241-245.

8. F. FicH aND M. TompA, The parallel complexity of exponentiating polynomials over finite fields. in
“Proc. 17th Annu. ACM Sympos. Theory of Computing,” Providence, R.1., 1985, 38-47.

9. J. voN zUR GATHEN, Parallel algorithms for algebraic problems, SIAM J. Compur. 13 (1984),
802-824.

10. . VON ZUR GATHEN AND E. KALTOFEN, Factoring sparse mullivariate polynomials, J. Compur.
System Sci. 31 (1985).

11. J. von zUrR GATHEN AND E. KALTOFEN, [actorization of multivariale polynomials over finite fields,
Math. Comp. 45 (1985), 251-261.

=




12

13.
14,

15,

19.

20.

21.

2,

23

24,
25.
26.
27,
28,
29,

30.

31

32

33

34,

35,
36.

EXR

MULTIVARIATE POLYNOMIALS 263

I. voN zZur GATHEN AND G. Seroussi, Boolean circuits are exponentially more powerful than
arithmetic circuits, manuscript, April 1985.

P. GriFFiTHS AND J. HARRIS, “Principles of algebraic geometry,” Wiley, New York, 1978.

J. Heintz, “Definability and Fast Quantifier Elimination in Algebraically Closed Fields,” Ph.D.
thesis, Universitidt Ziirich, 1982,

J. HEINTZ AND M. SIEVEKING, Absolute primality of polynomials is decidable in random polynomial
time in the number of variables, Lecture Notes in Comput. Sci. Vol. 115, pp.16-28, Springer-Verlag,
Berlin/New York, 1981,

. D. HiLerT, Ueber die Irreduzibilitdt ganzer rationaler Funktionen mit ganzzahligen Koeflizienten,

J. Reine Angew. Math. 110 (1892), 104-129.

. J.-P. Jouanorou, Théorémes de Bertini et applications, preprint, Institut de Recherche Mathémati-

que Avancée, Université Louis Pasteur, Strasbourg, 1982

. E. Kavtoren, A polynomial reduction [rom multivariate to bivariate integral polynomial fac-

torization, in “Proc. 14th Annu. ACM Sympos. Theory of Computing,” San Francisco, 1982,
pp. 261-266.

E. KaLToFEN, A polynomial-time reduction from bivariate to univariate inlegral polynomial fac-
torization, in “Proc. 23rd Annu. IEEE Sympos. Foundations of Computer Science,” Chicago, 111,
1982, pp. 57-64.

E. KaLtoren, Effective Hilbert irreducibility, in “Proc. EUROSAM 1984,” Cambridge, UK., Lec-
ture Notes in Computer Science Vol. 174, pp. 277-284, Springer-Verlag, New York/Berlin, 1984;
Inform. Contr., in press.

E. KavLtoreN, Fast parallel absolute irreducibility testing, J. Symbolic Comput. 1 (1985), 57 67.

E. KaLrtoren, Polynomial-time reductions from multivariate to hi- and univariate integral
polynomial factorization, SIAM J. Compur. 14 (1985), 469-489.

E. KaLtoren, Computing with polynomials given by straightline programs I1: Sparse factorization,
in “Proc. 26th Annu. IEEE Sympos. Foundations of Computer Science,” Portland, Ore., 1985,
pp. 451-458.

E. Kartoren, D. R. Musser, axp B. D. Saunpers, A generalized class of polynomials that are hard
to factor, SIAM J. Comput. 12 (1983), 473483,

H. T. KunG, New algorithms and lower bounds for the parallel evaluation of certain rational
expressions and recurrences, J. Assoc. Comput, Mach. 23 (1976), 252-261.

S. Lanpau, Factoring polynomials over algebraic number fields, SITAM J. Comput. 14 (1985),
184-195.

S. Lang, “Introduction to Algebraic Geometry,” Addison-Wesley, Reading, Mass., 1972.

S. LanG, “Fundamentals of Diophantine Geometry,” Springer-Verlag, New York, 1983,

A. K. LenstrA, Factoring multivaniate polynomials over finite ficlds, J. Compur. System Sci, 30
(1985), 235-248.

A. K. Lenstra, Factoring multivariate polynomials over algebraic number fields, in “Proc. Math.
Foundations of Computer Science,” Lecture Notes in Computer Science Vol. 176, pp. 389-396,
Springer-Verlag, New York/Berlin, 1984

A. K. LensTRA, Tactoring multivariate integral polynomials, Theoret. Comput. Sci. 34 (1984),
207-213.

A, K. LensTRA, H. W. LENsTRA, AND L. LovAsz, Factoring polynomials with rational coefficients,
Math. Ann. 261 (1982), 515-534.

D. E. MuLLER AND F. P. PREPARATA, Restructuring of arithmetic expressions for parallel evaluation,
J. Assoc. Comput, Mach. 23 (1976), 534-543.

D. A. Praistep, New NP-hard and NP-complete polynomial and integer divisibility problems,
Theoret. Compur, Sci, 31 (1984), 125-138.

M. O. Ranin, Probabilistic algorithms it finite fields, STAM J. Comput. 9 (1980), 273-280.

J. B. Rosser anp L. SCHOENFELD, Approximate formulas for some functions of prime numbers,
Hlinois J. Math. 6 (1962), 64-94,

T. ScudNeManN, Grundzuge einer allgemeinen Theoric der héheren Congruenzen, deren Modul eine
reelle Primzahl ist, J. Reine Angew. Math. 31 (1846), 296-325,




264 JOACTHIM VON ZUR GATIIEN

38

39.

40,
41.

42.
43,
44
45.

46.

47.

48,

49.
50.

51.
52.
33

. I. T. ScawarTz, Fast probabilistic algorithms for verification of polynomial identities, J. Assoc.
Comput. Mach. 27 (1980), 701-717.

1. R. SHAFAREVICH, Basic algebraic geometry, Grundlehren Band 213, Springer-Verlag, New
York/Berlin, 1974.

A. SHAMIR, Factoring numbers in O(log n) arithmetic steps, Inform. Process. Lett. 8 (1979), 28 31
R. SoLovay aND V. StrasseN, A [ast Monte-Carlo test for primality, STAM J. Comput. 6 (1977),
84-85.

V. G. SeriNpZHUK, Diophantine equations with unknown prime numbers, Proc. Steklov Inst. Math.
158 (1981), 180-196; English transl. Prac. Steklov Inst. Math. 158 (1983), 197-214.

V. STrASSEN, Berechnung und Programm, I, Acta Inform. 1 (1972), 320-335.

V. StrasseN, Vermeidung von Divisionen, J. Reine Angew. Math. 264 (1973), 182-202.

V. StrasseN, Polynomials with rational coefficients which are hard to compute, SIAM J. Comput. 3
(1974), 128-149.

V. StrasseN, The computational complexity of continued fractions, SIAM J. Compur. 12 (1983),
1-27.

L. VALIANT, 8. SkyuM, S. BErkowiTz, aND C. RACKoFF, Fast parallel computation of polynomials
using few processors, STAM J. Comput. 12 (1983), 641-644.

B. L. vaN DER WAERDEN, Zur algebraischen Geometrie. X. Ueber lineare Scharen von reduziblen
Mannigfaltigkeiten, Math. Ann. 113 (1936), 705-712.

P. J. WeiNBeRGER, Finding the number of factors of a polynomial, J. Algorithms 5 (1984), 180186,
0. Zariskl, Pencils on an algebraic variety and a new proof of a theorem of Bertini, Trans. Amer.
Math. Soc. 50 (1941), 48-70. .

0. Zariski aAND P, SaMuiL, “Commutative Algebra.” Vol. 1, Van Nostrand, Princeton, N. J., 1958,
H. ZassenHAUS, On Henscl factorization, 1, J. Number Theory 1 (1969), 291 311.

R. ZippiL, Newton's iteration and the sparse Hensel algorithm, in “Proc. 1981 ACM Sympos. Sym-
bolic Algcbraic Computation,” Utah, 1981, pp. 68-72.

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium




