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Motivation for research in parallel algorithms comes from two different directions.
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There are two basically different approaches to what constitutes a "fast parallel
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will only discuss this second "asymptotic® approach.

In the 1970’s, two surprising results were that Gaussian elimination (Csanky [1976])
and the evaluation of multivariate polynomials (Hyafil [1979]) can be performed fast in
parallel. However, a systematic study of the subject was only started around 1982. A
basic goal is to understand how the solution of problems depends on the ground field;
from this point of view, the most satisfactory methods do not depend on the field at all.
In this survey, we exclude results from the active and important area of Boolean compu-
tations for arithmetic problems (say, over Q or finite fields), and similarly algorithms
over Q that use integer division with remainder.

The paper is organized as follows. In Section 2, we introduce the two models of
computation. Arithmetic circuits, using only field operations, are sufficient to compute
functions like the determinant. For "combinatorial” functions like the rank of matrices,
we also allow Boolean operations in arithmetic networks. These networks compute
"piecewise rational functions” (Section 3) consisting of a rational function on each piece
of a partition of the input space into algebraic subsets. The "degree” of these piecewise
rational functions, in the sense of algebraic geometry, is studied in Section 4. The
degree of rational functions gives lower bounds on the depth of arithmetic circuits:
depth > log(degree). Unexpectedly, the corresponding degree bound in Section 5 is
exponentially weaker for arithmetic networks.

In Section 6, we discuss arithmetic networks as the input size and the ground field
varies. For the circuit part, the Boolean notions of uniformity carry over nicely. We
propose several notions of what it means to describe the arithmetic constants of a net-
work family "uniformly”. The observation that many algorithms (e.g. standard matrix
multiplication) work over arbitrary fields is made precise in the new notion of universal-
ity (Section 7). Eberly’s [1988] results on polynomial arithmetic (Section 11) show
interesting trade-offs between depth, uniformity for the circuit part, uniformity for the
constant part, and universality (characteristic zero vs. infinite vs. finite fields).

In Section 8, we define the arithmetic analogues of the Boolean complexity classes
P (polynomial size), NC* (depth log* (input size) and polynomial size), and

NC = U NC* | and of reductions. A test for the definitions is that the fundamental
kEN

properties should carry over from the Boolean setting. A major surprise is that
P = NC? when restricted to rational functions (Valiant, Skyum, Berkowitz & Rackoff
[1983], Kaltofen [1986]).

In Sections 9 and 10 we review results on linear algebra. Most elementary problems
fall into one of two complexity classes, RANK C DET, for which many natural
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problems are complete. A basic open question is whether one of the inclusions
NC! C RANK C DET C NC?is proper.

Section 11 discusses arithmetic of polynomials. Many interesting problems can be
solved in optimal depth. The apparently hopeless problem of computing large powers
yields interesting insights: over large finite fields of small characteristic, the model of
arithmetic circuits over the field is inappropriate; one should use arithmetic circuits over
the prime field. In order to discuss Berlekamp's algorithms for factoring univariate

polynomials over finite fields, we introduce a quantified version of "universality”.



2. The model of computation

For arithmetic algorithms, the most basic model of computation are arithmetic cir-
cuits (or "straight-line programs”), using inputs, constants from the ground field ¥, and
+, -, *, /. Arithmetic networks use these arithmetic operations and also Boolean inputs,
constants, and operations. The interface is given by ”sign” gates, which take an arith-
metic input a € F and produce a Boolean value according to whether a is zero or not,
and by 7selection” gates, which produce the first or second of their two arithmetic

inputs, according to the value of the one Boolean input.

As an example, the arithmetic network of Figure 2.1 decides whether a linear equa-
tion z,¢ + 2, = 0 has a solution ¢, and computes one, if it exists. The two inputs z,
and z, are supplied at the vertices v; and v,. The Boolean value of the output vertex
v 0 is T (= true) if the equation has a solution, and F (= false) otherwise. If the value
is T, then the value of vgis t = -z,/z,if 2, # 0, and t = z, otherwise.

For precise definitions, we follow the general approach of Strassen [1972], with ter-
minology borrowed from the language of Boolean circuits. (This general approach will
allow a simple definition of reductions in Section 8.) We fix an arbitrary ground field F .
(Most of what follows also works over more general rings, only division requires an extra
treatment.) For later use, it is convenient to start with a set Q2 (of operations). An
operation w € (1 will take arithmetic inputs from a field F and Boolean inputs from
B = {T, F}, and produce either an arithmetic value from F or a Boolean value from
B. Formally, also given is an arity function o = (0,,05): @ = N X N (w has o,(w)
arithmetic and o,(w) Boolean inputs), and a type function 7: Q2 — {F ,B} (giving the
type “arithmetic” or "Boolean” of the output of w). An (Q2,0,7)program is a tuple
(G ,\t,p) where G = (V, E) is a finite directed acyclic graph with vertex set V' and
edge  set B oY XY, AV =0 a  labelling of the  vertices,
eV —-{1,...,card(V)} an injective numbering of the vertices, and
p=(vq ..., v ) asequence of (output) vertices. Arities have to be respected, and ¢
has to be consistent with the topological order of G, so that the following has to hold.

For any v € V, there are exactly o,(\(v)) in-edges (w,v) to v with 7(A\(w)) = F,
and exactly o,(\(v)) in-edges (w,v) to v with 7(A(w)) = B. For each such w,
(w) < ov).
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Figure 2.1
The simplest model has the following set Q° of operations (and arities 0% types 7°).
Let F beafield, n € N, N = {1,...,n }, and

P =02n)=F U{+~*,/}U({inp} X N),

0,0) fw€F U({inp} X N),
Vw € Q0 o%w) = of(n )(w)={ Eg, 0; if we {+, -, *,F/}-

Pw)=1R(n)w)=F,

(The above description of 0° is assumed to be a disjoint union; similar notational
assumptions are made implicitly in the sequel. Whenever no confusion arises, we leave
away the arguments F and n .)

Definition 2.1. An arithmetic circuit over F (with n inputs and v outputs) is an
(Q2(n), of(n), 78(n))-program (G, X\, t, p) with p of length k =v. O
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These arithmetic circuits are powerful enough to calculate rational functions such
as the determinant of a matrix, but they cannot compute "Boolean functions” such as
deciding whether a system of linear equations has a solution. We now describe the
appropriate extension of the model.

Let F be a field, n,m y,u € NN = {1,..,n}, M = {1,...,m }, and
Q! =04 (n,m)=02(n) UB U {sign, sel, 4, A, VIU ({ing} X M).

Furthermore, ! = 74(n,m ) and o! = of(n,m ) are the extensions of 7 and ¢°,

resp., with

e { F we Q0U{sel},

B otherwise,

[ (1,0) @ ==sign,
(2,1) w = sel,
olwy=1{ (0,1) w=+
0,2) we{\ViA}
(0,0) weBU(ing X M).

\

Definition 2.2. An arithmetic network over F (with (n ,m ) inputs and (v,u) outputs)
is an (QF(n,m ), of(n,m), 74(n,m )Fprogram (G, X, ¢, p), where v output vertices in
p have arithmetic type F', and u vertices in p have type B. [

In particular, the lengthof pis k = v + pu.

Remark 2.3. We can actually simulate the Boolean part of an arithmetic network by
arithmetic operations, if we allow e.g. the operation w™ of conditional inverse with

c z-! if z 540,
wiz)= 0 it s =0,

for z € F. Then the Boolean values F, T are simulated by the field elements 0, 1,
sign(z ) by z*w(z ), and sel(z ;,z 9,y ) by 2,y + z,5(1-y); 4, \/, and A\ are clear. How-
ever, we prefer to keep the arithmetic and Boolean parts distinct. [

Remark 2.4. We want to discuss the related random access model of algebraic deci-
sion trees (Strassen [1972, 1983]), where one has a binary tree with vertices having one
child labelled by an operation from {2, and vertices having two children labelled by a
test from a set P of relations. Our notion of an arithmetic network over F with (n,m)
inputs is equivalent to Strassen’s notion of a computation tree of type (Q2(n,m), 9) .
However, it is more in the spirit of the model to compare with computation trees of type
(Q,P), where Q= {+,-,*,/}UF, P = {=0}. These computation trees easily
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simulate the conditional inverse and thus any arithmetic network, as in Remark 2.3.

However, arithmetic networks cannot efficiently simulate these computation trees.
Lete n € N N ={1,...,n},and b €N for I C N. Then, testing a,, ..., a,
successively, one obtains a computation tree of cost n which computes the function
f:F"* — F with

f(ay ...,a,)=0b;,where ] = {i:q; = 0}.

Suppose that the b; are algebraically independent over the prime field K of F. and
that the arithmetic network N over FF computes f , and has size s. Then, on input
a € K", all values ¢,(a) are in the field generated by the constants in N over K .
This field has transcendence degree 2", and thus s > 2". >PP For a similar argu-
ment over a finite field F (or F = Q), let g: {0,1} — {0,1} be a hard Boolean
function”, requring a Boolean circuit of size 2" /n (Savage [197?]. Then one can use
f(ay ..., a,)=g(sign(a,), ..., sign(a,)) € {0,1}* C F™ in the above example.
Since arithmetic networks over such a field F can be efficiently simulated by Boolean
circuits (von zur Gathen [1985]), any arithmetic circuit over F computing f has
exponential size {}(2" ), while there is a computation tree of cost n computing f .

The computation trees discussed here have an exponential number of leaves and an
exponential number of constants.



3. Semantics

In this section, we define the semantics of arithmetic circuits and networks, and
characterize the functions computed by them. An arithmetic circuit with one input and
one output, say, computes a mapping ¥ — F, and also a rational function in F (z ).
This gives rise to two notions, the "value semantics” and the "function semantics”. The
value semantics are straightforward, both for circuits and for networks: one traces exe-
cution on the given input. The function semantics of an arithmetic circuit associate a
rational function to each vertex of the computation graph. In the case of arithmetic
networks, the presence of sign gates leads to partitions of the input space, say
F" X {T,F}™, into zero- and nonzero-regions of sets of polynomials, together with
rational functions on the pieces of the partition. I call these objects piecewise rational
functions.

Let F be a field, n, v € N, a = (G ,\,1,p) an arithmetic circuit over F with n
inputs and v outputs, and a € F". The value semantics of o on input a associates to
each vertex of G = (V, F') a value from F U {co} by tracing the computation, using ¢
to order the in-edges to a vertex. ("co” stands for "undefined”.) Formally, we define
¢: V X F* — F U {oo} by induction along the depth of the vertex v €V . (Input ver-
tices have depth 0.) Let a € F*, s = o(\(v)) € {0, 2}, and e ,=(w ,v ),e y=(wo,v)
be the in-edges to v if s =2 (in which case (v )€{+,-,*,/}), and assume (e ;) < t(e5).
Then

A(v) if \(
pv)a)={ g if M
$(w)(a) Mv) d(wy)(a) if s =2,

v
v

where b /0=oco for any & € F, and bwc = oo for any w€ {+,-,%,/} and
o€f{b,c}. Let p=(vy...,v,) be the output vertices. The function
¢y F* — FY U {0} computed by « is given by

ik { (6(v1)(@)d(v @) it Vo € V ¢v)a) 5 oo,

oo otherwise.

Consider the two trivial circuits a; and a, of Figure 3.1, both with p = (v,). There

1 ife 0,
4"01(6):{00 ifa =0,



and
éﬂg(a ) ot ]'
foralla € F.
g =52 Y
1 2
Y2
Figure 3.1

The function semantics associates to each vertex v €V a rational function Wv) €
F(zy,..47, ) U {00}, again by induction on the depth of v. We use the above notation,
and set

Av) if \Mv)eF,
W) =1 % if Mv) = (ing,k),
Y w,) X (v ) w,) otherwise,

where f /0=o00 for [ € F(zy,...,2,), and f wg = o0 for w€ {+, -, *,/} and
0€{f,g}. (For a ring F, one would use a slightly different notion, either
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disallowing divisions (e.g. when F is not an integral domain), or setting f /g = oo if

gh % [ forallh € Flz,, ..., z,].) a computes the following sequence 9, of rational
functions:

! { (v ) ¥lv)) it v e v YWv ) # oo,

a 00 otherwise.

Consider the two arithmetic circuits of Figure 3.2. We have Yo, = = and Yo, = z?
# Yoy I F = Zy, then ¢,, = ¢,,. For any field F, Yo, = Yo, = 1, and ¢, 7# @,
Thus the two semantics just defined are mutually incomparable. However, if F is an
infinite field, &, a” are arithmetic circuits with n inputs and ¢ (a ) = ¢, (a) for all
a € F*, then 9, = 7,-. Thus in this case, the value semantics is strictly finer than
the functional semantics. For any v € V and a € F", ¢(v)(a) is either 9{v)(a) or
o0; #(v )(a) = oo if and only if Y{w)= f /g and g(a) = 0 for some vertex w on a
path from an input to v.

It is clear that the rational functions computed by arithmetic circuits are precisely

the elements of F ()= |J F(z,.,2,)" U {o0}. The remainder of this section is
n vEN

devoted to finding a similar description for arithmetic networks. It is clear how to
extend the value semantics to an arithmetic network NV over F with (n,m ) inputs and
() outputs. For each vertex v € V and input (a,b)E F® X B™ we have
¢p(v)(a,b) € F U{oo}if f\(v))=F, and ¢(v)(e, b) € B U {00} if 7(\(v)) = B.
N computes the function

dn: F* X B™ — (fY X B*)U {00},
given by the output vertices. E.g., in Figure 2.1 we have

F if a ;e U,
$(vy)(ay,0,) = T otherwise,

_.1 -lf al = O!
d(vq)a,a0) = a, otherwise.

(-ao/a ), T) ifa, 50,
¢n(ayaz) = (0,T) ifa, =a,=0,
(a2,F) ifo, =0 a,
Recall from algebraic geometry that a set U C F" is called locally closed if and only if
there exist [ ,...,f,,9 € F [z,...,z, | such that

Umise €FP*: fyla)= > = (8)m=0,g(s) 50}
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Definition 3.1.

(i) Aset U CF"™ X B™ is locally closed if and only if there exist V C F™ locally
closed and C € B™ suchthat U =V X C.

(ii) A piecewise rational function f = (U;,f 5 ,..fE , /B voorf B )ier over F with
(n,m ) inputs and (v,u) outputs consists of a finite partition
Fﬂ X Bm _— U U"
el

into locally closed subsets U;, rational functions

/5 €F (2102 ) U {00}
for1 < 5 < v, and Boolean functions
,-_,—B: B™ — B*# U {oo}
for 1 < 5 < p. It is required that for each ¢ € I, either f,-; = oo for all j, or
f,-; # oo for all j and * € {F, B}, and
projectionp. (U;) € domain(f F

fori € ¥ <L)
(More properly, we should define each f ‘-f € F (U;) to be a rational function on U, ; the
above definition avoids this concept for simplicity.)

We denote by r(f,-}) = * the type of f,-}, with * € {F,B}. We write f,-; when
no confusion about the type is possible. Note as a peculiarity that our piecewise
rational functions are "oblivious”, i.e. the number k¥ = v + u of outputs is the same for
each ¢+ € I. This corresponds to the fact that an arithmetic network has a fixed
sequence of output vertices.

We will define the function semantics along the computation graph. It is sufficient
to say which piecewise rational function ¥, = (U;, f ,-');e; is computed by an operation
w € Qp(n,m), and to define the composition of piecewise rational functions.

1. If w={(inp,k), then I = {1}, U; = F"XB™, and f{ = z,; similarly for
w€F orwe€ B.

If w=(ingk), then I ={1,2}, B =T, fB =F, U, = F"xBtlx
{£:peBet,

8. Hwe€{+,-, *},thenl = {1}, U, =F2and f{ = 2wz,

4. w=/, then I1={1,2},U,=F % (F)\{0}) Uy=F X {0},

f{ ==2y/zy8nd f§ = {oo}.

o
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5. Ifw=sign,then I = (1,2}, U; =F\{0}, Up={0}, f8 =T, /8 =F.
8. KB w==uwel, then I ={1,8}, U= PR{TLU,=Fx{F}, ¥ =1z,

[ =z, :

7. fw= -, then ] = {12}, U, ={T} f B =F, Uy= {F}, f 2 = T; similarly

forw € {A ,V}

In order to define the composition of piecewise rational functions, let f ,...,f, ,g
be piecewise rational functions, and o(g ) = (s,,8,) the arity of ¢. In order to substi-
tute the f 's into g, it is necessary that all the f 's have the same arity, say (n ,m),
and that exactly s, of the outputs of all the [ ’s have arithmetic type, and exactly s,
have Boolean type. To simplify notation, we assume that s = s, + s, and each
[ = (U; ’fh'*)s‘en has exactly one output, with r(f,/)=F if | < s pand {f,)=B
otherwise. We also assume that ¢ = (VJ- ,g;)_fej has one output. This assumption is

satisfied for any %, and furthermore, the general case is easily reduced to this case.

Definition 3.2. The composition

h =g (f 1psfs) = (Wi hp ek

is defined as follows. For

ko (et dJELLX i XTI %17,
let
Wy =il 5 s TV IR Uy i o D
Then
K={kel, X -+ XI XJ: W 58}
For k€K, let

: he = g;(f 1i, oS o, )
and hy = ﬁk if W, C dom(Ahk ), and hy = oo otherwise. [J
One verifies that A is a piecewise rational function, with (n ,m ) inputs.
We can now define the funclion semantics of an arithmetic network
N = (G, \i,p) over F with (n,m ) inputs and (v,u) outputs. To each vertex v € V
of the computation graph G = (V ,E ), we associate a piecewise rational function ¥(v ),
by induction on the depth of v. First, if v has depth zero, then (v ) = 95, ). If the

depth of v is at least 1, then 9{v) is the composition of ¥y(,) with the piecewise
rational functions of the input vertices w to v, ordered by ¢(w ). Finally, the piecewise
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rational function ¥y computed by N is the combination of ¥(v,), . .., ¥(v v+u)y Where
p=(vy ..., v,y,) are the output vertices of N. (Formally, it is the composition of
g =(F“XB* f{,f i) where each f, is the identity, with

UWva) - Wvpgy))
For example, in Figure 2.1 we have
Wvq) = (U; ,fﬂ,-e{l_z} with (2, 0) inputs and (1, 0) outputs,
Uy=F\o)) xF,1{ ==,
Up={0} X F, [§ =-1;
Wvg) = (U;,f ) ef{1,2) With (2, 0) inputs and (1,0) outputs,
U ssabove, f{ =-z,/%, f§ =<z,
The piecewise rational function ¥, of the network N in Figure 2.1 is
I =0t &1 heica
Uy=(F\{O}) X F, f§, =-z3/2), [ § =T,
Up={0} x {0}, 1§ =0, /1 } =T,
Us={0} X (F\{0}), /5 =0, /& =F.

Thus f describes the solvability (by f;P) and solution (by f £ ) of the linear equation
b A 1 t + 12 — O.

Remark 3.3. The functions ¥y computed by arithmetic networks N over F are pre-
cisely the piecewise rational functions over F .
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4. Degree of piecewise rational functions

If f = % € F(z,,...,z,) and g, h € F|z,..,2,] with ged(g, ) = 1, then the
degree of [ is
deg f/ = max{deg g,1 + deg h },
where deg ¢ is the total degree of ¢.

In this section, we recall the notion of degree from algebraic geometry for a piece-
wise rational function, generalizing the degree of a rational function. The degree is a
powerful tool for proving lower bounds, in some cases fulfilling the complexity theorists’s
dream: matching upper and lower bounds (see Strassen [1984] for sequential results, and
Kung [1976], von zur Gathen [1984b] for a simple case in parallel computation). In Sec-
tion 5, the degree will yield a lower bound on the depth of arithmetic networks. For a
general background on algebraic geometry, see Shafarevich [1974], Chapter I, and for
the degree, Griffiths and Harris [1979] and Heintz [1979]. Throughout the section, we
assume an algebraically closed ground field . X C F" is called a closed subvariety if
and only if there exist f ,,...,f, € F [z,,...,2, | such that

X={f1="" =/ =0}={a €F":f (a)= -+ =,(a) =0}

The degree of X then is

deg X = max{#L NX:L C F" affine linear, L N X fnite}.

If f €Flz,.,z,]\F issquarefree and X = {f =0}, then deg X = deg /. For
X C F™ arbitrary, the Zariski closure of X is

X = {Y:Y C F* closed, X C Y}
X isclosed. f X C F® and C C B™, we define
deg(X X C) = deg X.
Now let n,m ,»v,u € N, and
I Upod fyvsend b ¥ sl g Yeer

be a piecewise rational function. In order to define deg f , we consider for ¢+ € I the
following permutation of the graph of (f fi,- -+ /5, f:B,--- [:B) | U

Xl-={(a,c,b,d)EFn X FEY B X BFs
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Vi (a,b)€U; and ¢; =f,-‘f,-'(a,b)andd_,- =f,-_,5(a,b)}.

If some f.-; is co (and therefore all f,-; 's), weuse X; = U; C F" X B™. Since U; is
locally closed and each f,-JB is constant on U, there exist X;' C F**¥, X.'' C Bm+#
such that X; = X;' X X; ', and thus X; C F"*¥XB™*# is locally closed.

Definition 4.1. In the above notation, we define

deg((U;,/;)) = deg X;

deg f = max deg((U;,/;)). O

We recall the following facts.

Fact 4.2. (i) Let ¢: F* — F™ be an affine linear mapping, and X C F" closed.
Then

deg ¢(X ) < deg X.

(ii) Let proj: F* — F™ with m < n be a projection on some coordinates, and
X C F™ closed. Then

deg proj (X ) = deg X.

(iii) (Bezout's inequality) Let X, Y C F" be closed. Then X N Y is closed,
and

deg(X NY)<degX -deg Y. 0O

For proofs of (iii), see Schnorr [1981] and Heintz [1979]. Recall that in this section, we
assume that F is algebraically closed.

Theorem 4.3. Let F be algebraically closed, ¢,/ ;,...,f, be piecewise rational func-
tions,deg f; < d forl1 <: <s,andh =g (f y,...,f, ) their composition. Then

degh < degg - J] deg f; < degg -d°.
; 1<i<s

Proof. In the notation used for defining the composition & (and assuming 7k ) = F ),
we fix some & = (7,t1,...,% ) € K, and consider

Zy = graph(he [ proji(Wi))
={(a,c)eF" X F:3l b €B™(a,b)€ W, and ¢ = h(a, b)}
= {(a,c)eF*XF:3l beB™ (a,b)EVU;;, N -+ N Uy,

(f 1:‘1(’3 b )!'-'!f.s:', (a,b))E Viand ¢ = g, (/ 1:‘1(“ 0 )yeesf .ss',(a 0 )}
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Now consider
A; ={(a,b,d,c)eF® XB™ X (F'"XB*) X F:
(a,0)E U, N -+ AU, (dy..d,) € V;,
¢c =g;(d...d,),d = [, ;(a,b) V1< <5}
= projz; (graph(g; [ V;)) N

I<|’£']< projip (graph(f; 5 | Uy ;)
il s

where ”proj” is the appropriate projection. By Fact 4.2 (ii) and (iii), deg 4; <
degg ‘(deg/ )°. Also, Z; is a projection of A, , and by Fact 4.2 (i),

deg h = deg Z, < d deg /. < d d ).
eg max deg Z; < egglsI‘_ISJ gfi < egg(;?f"gca eg [;:) O

Corollary 4.4. Let w € Q7 be an operation with 8 = 7{w) inputs, and f Ysessid g
piecewise rational functions with deg f; < d for1 < i < 5. Then

deg(w » (f 159, )) < 242

Proof. For all w € QJ,-.l except w = sel we have s < 2, and the claim follows from

Theorem 4.3. Now let w = sel, so that s = 3, and, changing notation slightly, let
e =zsel «(f,g,h)
S =W fidiers 9 =(Vjg5)jess b = (Wi b eek -
Then
e = (T, )i, L =1 XJ XK,
and for | = (1, 7, k) € L we have
T, =U;NW, and ¢, = f,; if h, = T,
T, =V;NW, and ¢ =g¢; if by =F.
In the first case,
deg(T},e; ) < deg(U;,/f ;) - deg(Wy ,hy),

and similarly in the second case. O
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5. Size and Depth

In this section, we define the two cost measures of interest to us, namely size and
depth, and establish a lower bound on the depth in terms of the degree. It turns out

that the degree may be exponentially larger for arithmetic networks than for arithmetic
circuits of the same depth.

We first return to the general (2-programs of Section 2, and now assume that we
have a (depth) cost function for the operations

6: (1 = R,

Definition 5.1. If § is a cost function on 2, and a = (G, \t,p) with G = (V,E ) an
2-program, then

S(a)= 3 8(\(v))

veV

is the size of «, and

D(a) = P?:%ch : E - §(A\(v))

is the depth of a. O

As usual, a path P in G is a sequence (vqo,vq, . . ., vy ) with (v;,v; ;) € E for all
i, and the above sum is over v,...,ty . Now let F be a field, n ,m ,v,u € N; then our

standard cost function is

6: Qp(n,m) — N,

) ig=a { l fwe {+1":* !/1‘1’V1A ,S&l,sign},

0 otherwise.

The size and depth of arithmetic circuits and networks over F', as now defined, are
well-studied in several contexts. Strassen [1985] gives an overview concerning the (non-
scalar) size for Q° ("length of computations”), where his degree bound (Strassen [1972])
yields matching asymptotic upper and lower bound for interesting problems. Strassen
[1984] and Ben-Or [1983] give very strong results about the sequential complexity of
computation trees for non-scalar cost; this model is discussed in Remark 2.4. Cook

[1985] provides an overview of depth results for Boolean circuits.



IR

The depth of arithmetic circuits equals, within a constant multiple, the logarithm
of the formula size for rational functions (Brent [1974], Muller & Preparata [1976]).

Fact 5.2. Suppose that F' is infinite, and the arithmetic circuit o over F computes the
rational function f . Then

D (a) > log(deg / ). O

This was shown by Kung [1976]; von zur Gathen [1984b] has a version over a finite field
F . (All logarithms in this paper are in base 2.) Recall that for

[ = % € P22 )

with ¢, h € F [z,,...,7,] and ged(g, A ) = 1 we have
deg f = max{deg g, 1+ deg A }.

(This agrees with the usual degree of a polynongial J/ , unless f € F.) Consider the
corresponding piecewise rational function [ = (U;,f ,f),-ef with T = {1, 2},
(UnfT)=({h #0},f )and (UpS§)=({h = 0},c0). Then

deg / = deg f g
We first show that for any arithmetic network of depth d computing this _)‘: we have

d 2> log(deg f ) (Proposition 5.5). Then we see that for more general piecewise
rational functions only a much weaker lower bound on depth holds (Theorem 5.7).

Let N = (G ,\,p) be an arithmetic network over F with (n,m ) inputs and (v,u)

outputs, G = (V, E ), and
Vpg=1B)= {veV:7{v) =B}
the set of Boolean vertices. A function
m Vg — {T,F,00}
is called a Boolean assignment for IV, and
A, ={(a,b)EF" XB™:VveVg ¢,(a,b)=n(v)}

is the set of inputs that yields 7. Note that b is determined by =, and that A , may be
empty. '

Let N, be the arithmetic circuit over F with n inputs obtained from the network
N by leaving away the Boolean part of N, and replacing the selection gates by a fixed

connection according to m. Then for (a ,b )€EA ,, the value semantics of N, on input «

is equal to the value semantics (at the arithmetic vertices) of N on input (a,b ).
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Definition 5.3. Let N be an arithmetic network over F, and [ = (U;,f;)ic; 2
piecewise rational function. Then N computes f strictly if and only if N computes f

and for all ¢+ € I there exists a Boolean assignment m; for N such that U; = A o
a

Note that in particular each proj,(U; ) € B™ counsists of at most one element. The
piecewise rational function computed strictly by N is essentially unique, except that in
our definition (say, with m = u = 0) i3 € F (z y,...,2, ), and different such [i; may
restrict to the same rational function on U;. Without some condition such as "strictly”
we cannot expect a relation between the depth D (V) and the degree deg f , since the
trivial arithmetic network N computing O also computes f = ((U,, 0), (U,, 0)) for a
partition F* = U, U U, where U,, say, might have arbitrarily large degree.

Definition 5.4. If f = (U;,f;);er is a piecewise rational function, then
F" X B™ = | J U; is a partition, and F" = | J proj; (U;). Any U; such that the
sel iel

Zariski-closure of proj,(U;) equals F " is called a thick subset. The thick degree of f
is

thick-deg(f ) = max deg(U;,f;). O

. thick
Trivially, degf > thick-deg(f ).

Proposition 5.5. Suppose that F is algebraically closed, and the arithmetic network
N computes f strictly. Then

D(N) 2 log(thick-deg(f )).

Proof. Let f = (U;,f;);er, and ¢+ €I with U; thick. By definition, the Boolean com-
ponents of U; and f; are constant, and there exists a Boolean assignment 7 for N such
that U’'=U; N A, is such that proji(U°) is dense iIn F*. Let
f  =(U"',f; | U’). Then deg f ~ = deg(U;,f;), and N, is an arithmetic circuit
computing the rational function f” given by f ‘. By Fact 5.2,

D(N) 2= D(Ny,) 2 log(deg /" ) 2> log(deg / “)=deg(U;,f;). O

Example 5.8. It comes as a surprise that Proposition 5.5 does not hold with thick-
deg(f ) replaced by deg(f ). Consider the arithmetic network N of Figure 5.1, with
(n,0) inputs over F, where n is a power of two. (For simplicity, we assume
charF = 0.) The bold + stands for a binary tree of +-gates. Let vg; be the j-th sel-

gate, 1 < 7 < n /2. The piecewise rational function computed at vg;j is

"nbtr.J v ((UJ'IrfJ'i)!(UjQrij))!
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where Uy = {29; 179; ~15£0}, f;; =0, Ujg=F"\U;y, fj3=1. 9y consists
of 2n/2 pieces, each a product of hyperbolas or their complements in F2. The ”smal-
lest” piece is

V= N Upp=A{(6y..,0,)EF*:V5i<n /2 Gg;1a4; —1 =0}
15 <n /2

with the (constant) rational function ¢ = n /2. V is a product of n /2 hyperbolas, and
has degree deg V = 2"/2. Thus deg(¥) = 2"/ (in fact, equality holds), and
D(N) =4+ logy(n /2) = 4 + loglogdegyy . [

Given our general need of methods for proving lower bounds, this example is rather
disappointing. Next, we show that things at least cannot get much worse.

Theorem 5.7. Let F' be an algebraically closed field, N an arithmetic network over
F,and f a piecewise rational function that N strictly computes. Then

D (N) 2 log(1 + log deg(f )).

Proof. As usual, let N = (G \,p) and ¢ = (V,E). The depth D: V — N of ver-
tices is defined in a natural way by

D(v):mgx 3 &w ),

w on P
where the maximum is over all paths P in G ending in v. %, denotes the function
semantics of V. We show by induction on D (v ) that
deg 9, < 22"
forany v€V. Let w= X(v). If D (v) = 0, then
w€F U(inp X N)U (ing X M),

and ¥, = (U, f )with U = F"® X B™ and

e E UAm it Y ot )
Thus deg ¢, = 1 = 221,

Now let D(v) >0, w=X(v)eQ!, and e, .,e, the in-edges to v, with
¢, = (w;,v) and w; € V. and let d =  max (deg ¥y, )- Then1 < s < 3, §w) =1,
<i<s

deg(w) < 2,and D (v) = max 1 4+ D (w; ). By the induction assumption,
<i<s

fag gt -1
By Corollary 4.4,
deg ¥, = deg(w(ty,--ry,)) < 242 < 227 7H2= 921
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6. Network families and uniformity

In this Section, we give a framework for discussing families of arithmetic networks
(which can deal with inputs of varying size) and uniformity. Since any given network
has a fixed number of inputs and outputs, we only consider the computation of oblivious
functions f : F* XB* — F* xB* where the length v,u of the outputs are functions
only of the input lengths n ,m . Let

frm. FnoxB™ __]_Fv{n,m)XBp(n,m)
be f restricted to inputs of length n ,m .

Definition 6.1. A network family over F is a sequence N = (N; )i en of networks over
£, where N; has (n(i)m(i)) inputs. It is assumed that n(i)+ m (1) <
n(j)+m(y) for i < j, and, if n(i)+m (i) = n(s)+m (), then n(t) < n(s)
Then N computes f if and only if for all ¢, N;
oy = f BUImG)

computes f *()Im(i) je

Remark 6.2. The order condition on n (i), m (i ) ensures that n (i )+m (i) > %\/z—

and n (i)+m (i) > Vi for ¢ >11; this will be used in Theorem 8.3. (The smallest

possible values for n (i )+m (i) are0,1,1,2,2,2,3,...fori =0,1,2,3,4,5,6,- - -.)

a
The networks that we consider have varying degrees of "uniformity” (when we vary

the input size) and ”universality” (when we consider varying ground fields). For exam-

ple:

1. The networks of Borodin, von zur Gathen & Hopcroft [1982], Berkowitz [1984] and
Chistov [1085] for.the characteristic polynomial of a n Xn matrix look "the same”
for all fields F and all natural n. Csanky’s [1976] network for the same problem is
only defined for fields of characteristic zero or p >n, since it involves a division by
n |. However, where it is defined, it looks "the same” for any field and any n .

2. The deterministic network of Ibarra-Moran-Rosier [1980] for computing the rank of
n Xn matrices is defined "uniformly in n” and over any field, but for example
works correctly only for real fields.

3. A network for the Discrete Fourier Transform would only be defined if the field has

the required root of unity; furthermore this root of unity would have to be one of
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the constants of the network.

4. Some of the algorithms mentioned in Section 11 use interpolation at n points.
This is only possible if the field has at least n elements. For a finite field F this
requires essentially different algorithms for the case when n <#F and when
n >#F.

5. Some of the algorithms in Section 11 use a Vandermonde matrix of n field ele-
ments, and also its inverse.

There are two problems in deseribing an arithmetic network N over F. One is
how to specify the structure of the network, the other is how to specify the constants
from F'. To emphasize this, we will represent N by a ”circuit” part o = oy, Where
the constant gates are described by symbols, and the ”constant” part 8 = By consist-
ing of the actual constants.

Definition 6.3. Let F be a field, (G ,\,t,p) an arithmetic network over i
k = # XNY(F) the number of arithmetic constant gates in «, say v,, ..., v;, and
Ay - .., Ap mew symbols. Then the circuit part ay of N is ay = (G ,3\,!.,,0), where
Nv)=Xov)if \(v)¢F, and () = \;. The constant part By of N is the vector
By = (\v1), ..., Nu)) € F*. O

From ay and By, N can be recovered, and we write N = (ap By ), often drop-
ping the subscript V. The circuit part of N can be described using the same kind of
standard encoding as for Boolean circuits, since the \(v) ¢ F can be encoded over B.

It is well-known that families of Boolean circuits can compute functions which are
not Turing-computable. For lower bounds, this may not be relevant, but for upper
bounds it is desirable to be able to compare them with models that take inputs of arbi-
trary length, such as Turing machines. Borodin [1977] proposed a notion of ”unifor-
mity”, where a Turing machine, on input i, constructs the i-th circuit of the family.
This circuit constructor is like a factory program that produces chips for inputs of arbi-
trary size for the given problem. We will be rather generous in allowing the circuit con-
structor to run in polynomial time, e.g., but want circuits that run very fast in parallel,
e.g. In poly-logarithmic time. For certain applications, one may even allow random
polynomial-time circuit constructors (see Fact 8.1).

A description of fy similar to that of ay - of finite length over a finite alphabet -
is of course not possible for arbitrary constants from an uncountable field, e.g.. In our
standard notion of uniformity, we only allow the constant 1, and for the circuit part fol-
low Borodin [1977] (Definition 6.5). We then extend this to allow lists of pairwise
different elements, and also more general constants (Definition 6.7). Eberly’s [1986]
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results about polynomial arithmetic (Section 11) illustrate the subtle interplay between
these notions of uniformity for constants, of L - and P -uniformity for the circuit part,
and of the type of field (characteristic zero vs. infinite vs. finite). Abusing the usual
notation, we denote by L (resp. P) the class of Boolean functions (rather than
languages) computed by log-space (resp. polynomial-time) bounded deterministic Turing
machines.

Definition 8.4.

(i) The standard encoding & of the circuit part o — oy of a network N =(a,B) over
F is a sequence of tuples (F,:,ul, ..., u) €EB’, one for each vertex v of N,
where;

(a) v is the vertex number of v, encoded in unary,
(b) A= (v ) is the type of vertex v , encoded in some reasonable fashion,

(¢) s = o(X\(v)) is the arity of v, and the j-th input to v comes from the vertex
with number u;,for 1< <s.
(ii) The standard encoding of a constant vector 8 = (8 B =0, ... 1) B

i g

Definition 6.5. A family N = (NV;);en = (@ ,5; );en of arithmetic networks is
P-uniform if B; € {1}" for all ¢, and the encodings o; ,E,- of a; and B; can be com-
puted by a deterministic Turing machine using time S (N; )™ on input i (in unary).
If the Turing machine uses space O (log S (1V;)), then N is L-uniform. O]

L -uniformity will be our standard notion. The remainder of this section is only
required for Section 11. Other notions of uniformity for Boolean circuits, as discussed
e.g. in Ruzzo [1981] and Cook [1985], would also carry over to our arithmetic setting.
In order to illustrate the power of more general constants, we introduce the following
notions, which will only be used in Section 11.

Definition 6.8.

(i) A description of constants is a sequence vy = (b, .. ., by, dy, ..., d), where
each b; €{co, =, 7} and each d; is a polynomial in Z[y,, . . ., y;_;,¥].

(i) Let F' be a field, and F (CF its prime field. A description of constants over F is a
description of constants vy = (b, ..., by,d,, ..., d;) with the following pro-
perty. There exist 3y, . . ., f; €F (the constants being described) such that for all
7,1<7 <k, the following holds.

(a) If b; is oo, then B; is transcendental over Fy(fy, . . ., Bi 1)
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Otherwise, denote by d_J-EFO(ﬁl, ., Bj1)y] the image of d; under the
mapping y; |— A, for 1<! <j. Then

(b} M b; is =, then Ej(ﬁj)'=0 and ;i-; is an irreducible polynomial over

FO(ﬁlJ AT ﬁj—l)'
(c) If b; is 4, then E_, (B;) # 0.

For any sequence f = (8, ..., B;) satisfying these conditions we say that ~
describes B. If v = (; );en is a family such that ; describes g; =(Bi1, - - -, Bi.)
then we say that v describes § = (B; ); e

(iii) If « is a circuit part with constant vertices Uy, o, Gppand = (by,.... 0%,
dy, ..., d;) a description of constants over F , then for any SEF * described by ~
we have an arithmetic network N = (,8) over . Now N=(a,§) is called a net-
work description over F if the value semantics of the outputs of («,3) are indepen-
dent of the particular choice of # described by ~. (The rational functions associ-
ated with the arithmetic vertices of (a,) may depend on 8, however.) We say that

(@,Y) describes any such N = (a,f). O

We now have a way of encoding circuit and constant parts of arithmetic networks.
The one notion still lacking is the ”size” of such desecription.

Clearly all such descriptions of constants can be encoded over some finite alphabet.
We now assume a fixed such encoding, with the polynomial d; given by a arithmetic
circuit over Q (in effect a straight-line program over Z) that wuses inputs
Yi---,Yj-1» ¥, constants 0,1, and only the operations +, -, *; and with all indices
written in binary. We denote this encoding by <, and call it the standard encoding of a

description of constants. Let 8 be the size of the arithmetic circuit computing d;.

The stze of vis S(7)= Y sj. Lety=(b,,...,b,d,, ..., d,)bea description
17 <k
of constants. Then the degree of ~; is

deg(v) = T[] degd; .
1< 5 <k

b

A

Obviously, one can describe elements of arbitrary fields, finitely generated over the
prime field, with b, =---=1b, being oo, b,, ;= - =5, being =, and
by 41 = ' = b; being # for some u,v. Then deg(n) is the degree of the finite alge-
braic field extension [Fo(8y, . . ., By ): Fo(By, - - ., By )], if v describes (8, . . ., B;)-

Definition 6.7.
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(i) A family N = (N;);en = (;,8;)ien of arithmetic networks over F is P-P-
uniform if there exists a family (v;);cn of description of constants, with (a; ,v; )
describing V;, such that degy; = {91, and a; 5,- can be computed by a deter-
ministic Turing machine using time S (N; )2 (%) on input ¢ (in unary).

(i) If the Turing machine as above works in space O (logS(N;)), then N is
L —L —unif orm .

(i) If N is L -L —unif orm and each b; in each ~; is either £ or else dj =1 and b;
is =, then N is called 2-unif orm . (Le., only 1 and pairwise different constants
are allowed.) O

Example 6.8. We want a description of constants ~; desecribing 1 arbitrary pairwise

distinct elements of F'. Le., v; describes any 8; =(8;,, . - ., Bii ), where for all j 54k,
t;; #By . For ¢ EN, let

i :(7&, ey ?'é,dl; ey d:')r
dy=1,and d; =(y-y,) - (y-y,) for j >1.

Thus, ~; describes §; if and only if d; (8; 1)540, where d; ;=1 € F [ ], so that ¢;, is an
arbitrary element of F', and similarly d_,-_,» (B:; )70 for 2<j <1, which is satisfied if and
only if the entries of 3; are pairwise distinct. ~ = (; )ien is a family of descriptions of
constants over F' if and only if F is infinite.

Example 6.9. Given ¢ distinct elements f3;,, . . . , f; as in Example 6.8, we can also
describe the entries of the corresponding Vandermonde matrix and its inverse. (Such
constants are used in Eberly’s [1984] algorithms; see Section 11.) To have a constant
equal to 613., e.g., we encode an arithmetic circuit that computes the j-th power; this
can be done by a Turing machine with work space O (logj ). The determinant then is a
product of differences of entries. For the adjoint, we encode Berkowitz' [1984] deter-
minant algorithm; this can be done L -uniformly. The running time of the determinant
calculation - which does not enter our notion of uniformity - would be ¢ 21, with
parallel time O (log®?).

Example 6.10. We now give a description of constants ~; describing any

By =(ty, ..., 4)=(1,-1,..., % ¢t), where ¢t; is a primitive 2°-th root of unity.
(These roots of unity appear in the usual treatment of the Fast Fourier Transform. We
assume charF =0.) Let v; = (=, ..., =,dy, ..., d;) where dyg = y-1, d | = y +1,

and for 7 >1, d; = yQ-yJ-_l. Then v=(7; );en is 2 uniform family of descriptions of
constants. It is "over F'” if F has a primitive 27 -th root of unity for all 7 >0. Note
that degy; = oF
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Example 6.11. We extend the previous example to obtain descriptions for primi-
tive k-th roots of unity, where k is not necessarily a power of 2. For every composite
number 7, choose a prime divisor p(5) of j, e.g. the smallest. Let
Y% =(= ...,=,dy, ..., d;)where d )=y -1, and for j >2,

q yj"1+yj_2+ -+ -+1 if 7is prime,

T { yp(i)_yj/p“) otherwise.

Then 7=(7; )ien is a uniform description of constants over C for (; )i en» Where
Bi=(ty, ..., ¢)and t; is a primitive j-th root of unity. One only has to check that
any p (7 ) can be computed in space O (log 5 ), and that the sequence is ”coherent with
respect to p 7, l.e. t;’(" }=tj Jp(4) for every composite number j.

Example 8.12. Let F' be a field of characteristic zero. The description of constants
v=(7; ):’eN with 4, = (=, ..., =,1, Y-Yot¥o Y-y 12 R e 9'_?”:'21 is a uniform
description of constants over F , describing B e=(1,24...,% ).

Remark 6.13. We have the following relations between our notions of uniformity. Let
F be a field, and N a network family over F .

(i)
N is s%-uniform

Il
N is L —uniform => N is P —uniform

I I
N is L -L —uniform =>' N is P-P —uniform
(i) NV is %-uniform, char(F ) = 0 => N is L -uniform.
(ili) Les¢ F be a field of characteristic zero, and f = (f;); eN  With
fi(y, ...,2;)=2" € F. Then / can be computed by an L L -uniform fam-
ily of networks over F' (Example 6.12), but not by a P -uniform family.

(iv) Let p be a prime number. Then P —P -uniform families of networks over Z, can

be simulated by P -uniform networks. O
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7. Universality

We now formalize the notion of an arithmetic network being "the same” as the
ground field varies.

Definition 7.1. Let X be a set of fields.

(i) An arithmetic network N =(a,B) over ¥ consists of a circuit part o and a constant
part 8. The circuit part « is as in Section 6 (with an arithmetic vertex v having
type 7{v ) = X) and has constant nodes labelled by symbols X\, . . ., X\, . The con-

stant part f assigns constant values to A\;, . .., \; given a particular ground field
F €L, i.e. for each field F €%, f(F )eF*.

(ii) A description of constants v and a network description N = (E,;) is over T if it is
over F' for all F €X. O

Thus for every F €Z, we get from a network description N an arithmetic network
Np=(a,8(F)) over the field F. As inputs to N we consider sequences
(Fidy, - onp 85505 ..., 0, ), where FEE, 64, ...,6,EF,and by, ..., b, €B; and
similarly for the output. Thus N computes a function

It L JGF IXF XBY 1 | ({(F JxXFYXBF)
Fex Fex

for certain n ,m ,v,u€N.

Some interesting sets of fields are:

Fields = { all fields },

Real = { real fields },

Charzero = { fields of characteristic zero },

Char(p) = { fields of characteristic p }, where p is a prime number,
Fin = { finite fields },
Infinite = { infinite fields }.

(Recall that a field is real if -1 is not a sum of squares. Every subfield of R is real.
To avoid set-theoretic difficulties we assume a fixed universe.)

R

Definition 7.2. Let £ be a set of fields. A family (o; ,E‘- )ien of encodings of circuit
parts a; and constant part J3;, using only the constant 1 and computable by a Turing
machine in time S(a,-)o(l), is a P-uniform family of arithmetic networks over X.

Similarly for L —uniform . O
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We now have a nice class of ”"computing devices”. We will say "network over &7
for ”L -uniform family of arithmetic networks over £”. In particular, a network over

{F } is nothing but a L -uniform family of arithmetic networks over the field . The
other notions of uniformity can be universalized similarly.

Again we have two kinds of semantics for these networks. The value semantics of
a network NV =(N; ); cn over I is a function
én: | {FIXF*XB") — Y ({F}XF*xB*)U {c},
FeX FeXl
given by the value semantics of N, and NV also computes piecewise rational functions

on F"*({)xB™(*) for each F €L and i €N. (We resist the temptation to define rational
and piecewise rational functions in £(z 4, . . ., z,).)
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8. Complexity classes and reductions

We want to define the arithmetic analogues of the Boolean complexity classes
NC*k C NC C P. Cook [1985] gives an overview of the Boolean theory. Our choice
of definitions is guided by postulating that three properties carry over from the Boolean
setting:

1. the above inclusions should hold,
2. it should be a nontrivial question whether the inclusions are proper,

3. the classes should be closed under a natural notion of ”reduction”.

Our classes will consist of (piecewise rational) functions rather than of decision
problems; in Section 10, we will extend the classes somewhat more.

For a set ¥ of fields, Raty is the set of families of functions £ x B* —
©* x B* that can be computed by uniform network families over ¥; in a similar way,
one obtains classes of piecewise rational functions. The set,
Rat z(NON -UNISIGMAORM ) of all families of piecewise rational functions (satislying
the conditions on input sizes of Definition 6.1) consists precisely of the functions com-

puted by families of arithmetic networks over £ (Remark 3.3). Our preliminary
definition is:

Pe= {f €Raty: there exists a network Nz(Ni)s'eN over ¥ computing
/= (fi)iens with S (N; )=1°(), and thick-deg(wy, ) is i © (1)},

NC% ={f € Pg: there exists a network N = (N;)ien over ¥ computing
f = (/i)ien With §(N;)=:¢9(") and D (N;) = O (log* i )}, for any k €N,
NCy = | NC%.
k>0
One can consider several variants of these classes, e.g., C (NON -UNIFORM ) when
the uniformity condition is dropped (and C is any of our classes), C (P -UNIFORM)
when L -uniformity is replaced by P -uniformity, and C (ARB -DEG ) when the condi-
tion on the thick degree is dropped. Remark 6.12 (iv) shows that for any prime p,
= Char(p) and any «class C we have Cyx(P-P-UNIFORM)=
C (P -UNIFORM ).

The condition that the thick degree of the piecewise rational function computed by
N; be polynomial is motivated by the fact that the proper inclusions
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NC% (ARB-DEG) ; NCE+! (ARB-DEG) ; NC s(ARB -DEG ) ;

Py(ARB-DEG ), for k € N, are trivial if T contains an infinite field; for the first one,
e.g., consider the family '

[ ’.]*'H.
 =(f:henWithf; m(F 22" )lotF e€Dandi >1,

and use Proposition 5.5 to show that f € NCE*! \ NCL. The reason to use the
thick degree rather than the degree is postulate 3; see Theorem 8.3.

An arithmetic network with (0,m ) inputs and (0,u) outputs is equivalent to a
Boolean circuit with m inputs and u outputs. If we denote by B the set of families of
(oblivious) Boolean functions f : B* — B”, then B C Rat 5, and

NCE NB = NC*,
NCysN B = NC,
PEﬂB =P,

where the Boolean classes are defined using L -uniformity and consist of functions rather

than the (more usual) languages. Thus our definition satisfies the first two postulates: if
in any of the inclusions

NC§ € NCEM C NCy C Py
equality holds, then also for the corresponding Boolean inclusion.

Thus the "purely Boolean part” of our complexity classes suggests the conjecture of
proper inclusions. It is quite a surprise that in the "purely arithmetic part” the inclu-
sions are actually equalities. So we consider the polynomials and rational functions in
Ratg: For a field F, F[]= (JF [z,,25,..]Y C F()= |JF(z1,%9,..) C Ratp are

vEN veN

the sets of finite sequences of polynomials respectively rational functions over F ; (]
and X() are the corresponding unions over all F €X. Then
P p }(NON—UNIFORM) N F [] is essentially Valiant’s [1979] class of p-computable
polynomials over F'. (The only difference is that Valiant’s class consists of polynomials,
and ours of the corresponding polynomial functions.) The following non-trivial fact
shows that any family of rational functions which can be computed in polynomial size,
can actually be computed in logarithm-squared depth.

Fact 8.1. For any set I of fields, Pg(NON-UNIFORM)NXI()=
NC ¢ (NON-UNIFORM )N £(). O
Valiant, Skyum, Berkowitz & Rackoff [1983] prove Fact 8.1 for £[]. Their proof

makes use of Strassen’s [1973b] method for avoiding divisions, which shows that the
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class P y(NON -UNIFORM ) does not change when we disallow divisions in the arith-
metic networks. Kaltofen [1986] has extended Strassen’s result to rational functions, by
showing how to calculate numerator and denominator separately, and then Fact 8.1 fol-
lows. (Fact 8.1 is also true for "R —~-UNIFORM " instead of " NON ~-UNIFORM ”, where
"R 7 stands for random polynomial time; see Borodin, von zur Gathen & Hoperoft
[1982] for the case of finite fields.) Miller, Kaltofen & Ramachandran [1986] give a
slightly different proof of Fact 8.1.

For a more precise statement of Fact 8.1, let us define R -uniform families
B = (B;)iecn of constants, where a constant Bi; can be described by the binary
representation of an integer v;; € N with log(v;;) = i9(), Then N; = (e ,B;) com-
putes f () if for all sets B;; C F of size 5,

oy, = [ (")(“)

with probability at least 3/4, say, for all inputs a, where B;; is chosen uniformly at
random from B;; .

1. Strassen [1973b] proves that any family of polynomials in Py N E[] can be com-

puted by a P —R —uniform family of networks without divisions. (See BGH for
finite fields.)

2. Kaltofen [1986] extends this to Z( ).

3. Valiant, Skyum, Berkowitz & Rackoff [1983] show that any family as in 1. can be
computed by an arithmetic network of depth X.

One test for whether our model is reasonable is a simulation by the standard model
of (uniform) Boolean circuits over the fields of practical importance in computer algebra,
e.g. finite fields or Q. (By Remark 2.4, algebraic computation trees with many leaves
fail this test.) This question is discussed in von zur Gathen & Seroussi [1986]. For
F = Q, a probabilistic simulation of arithmetic circuits is possible with only polyno-
mial increase in size (von zur Gathen [1985]); if no divisions are present, Jung [1985] has
a very efficient simulation. For finite fields, the simulations are satisfactory for size, and
if either the characteristic is small or no divisions occur, also for depth.

The notion of "reduction” plays a key role in the classification of Boolean problems
according to their sequential complexity (see Garey & Johnson [1979]) and parallel com-
plexity (see Cook [1985]). It comes in (at least) two favours: ”Cook-reduction” and
"Karp-reduction”. For us, the main consequence of the statement ” f is reducible to

g” is: if ¢ has a fast algorithm, then so does f . Hence we now introduce the parallel

arithmetic analogue of ” Cook-reduction”.
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Definition 8.2. Let T be a set of fields, / and g = (g¢;);cn families in
Raty(NON -UNIFORM ), and C C Raty.

()

(i)

Consider the set 0 = Q4 U | 19i} of operations, consisting of our usual opera-
1EN

tions plus "oracles” for any g;, and let 0,7 be the appropriate arities and types for

Q. A reduction from [ to g is a family (IV; ); ey of (Q,0,7)-computations comput-

ing /. (We are slightly extending our notion of "operation” here, by allowing g;

to have more than one output.)

The cost of an oracle node g; , with (n ,m ) inputs and (v,u) outputs, is
8g;) = [log(n +m ) + logdeg(g; ) -|

We get various resource-bounded reductions by imposing on N any of the above
conditions for our complexity classes. In particular, N = (NV;);on is 2
NC ¢ (P -UNIFORM )-reduction if N is P -uniform and D (N;) = O (logi ); then
also S (N;) = i2(), If in addition N is L -uniform, then it is a NC¢ —reduction;
this will be our standard notion of reduction. (In a uniform description of a node v
with (v ) = g;, we use a symbol for g and encode i in unary.) / is reducible to
g if there exists a NCg —reduction N from f to g; we write f < g. We say
that f and g are equivalent (written f ~g¢g)if f <g and ¢ < f . (For
example, all members of NC'y} are equivalent.)

A function f € Raty is hard for C if ¢ < f for all ¢ € C. A function
[ € Raty is complete for C if f ishard for C and f € C.

The closure C * of C is
2 = {g€Rat:dl fEC g < [ }.

C is closed under reductionsif ¢* = C. O

Theorem 8.3. Let T be a set of fields.

(i)
(ii)
(iii)

Reducibility is a partial order on Rat 5.
Equivalence is an equivalence relation on Raty.

NC‘% C NCg C Py are all closed under reductions, for any k£ €N.

Proof. (i) and (ii): < is reflexive: For any /| = (ff ;)pex € Raty and i €N, let N,

teN

consist of one vertex v with A(v)= f,, plus the appropriate input nodes. Then
(N; )ien is a NC ¢ —reduction from f to f .
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Let f,9,h € Ratg with / < g and ¢ < h. and let (V;);en and (N ;) en
be NC¢ -reductions from f to ¢ and ¢ to A , respectively. Let M; be obtained from
N; by replacing each oceurrence of some g; by N’ ;. We claim that M = (M;); eN is
an NC ¢ -reduction from f to h. Let F€X, n,m : N — N be the input-size func-
tions and d : N — N be the degree function for the family ¢ = (g;), en and
n’ym’,d”:N — N be the corresponding functions for A. To simplify notation
involving logarithms, we assume in the following that all 1 and n (i) 4 m (i) are at
least 2. Since both circuits are NC'g -reductions, there exists a positive constant ¢ € R

such that for all ¢ € N, D (N;), D(N ;) £ ¢ logi. We may assume that ¢ > %

Fix some + € N, and let P be any path in N;. The length §P ) of P is the sum

of the depth costs § (\(v)) of each vertex v on P, and is bounded from above by
D (N;). Let

A= 3 §(Mr))
)(9]65}};:1

be the depth contribution to P not involving ¢g. After possibly modifying ¢ slightly,
we can assume that only g; with j > 16 are used on P. Then, using Remark 6.2, we

have

A+% Y g A+ ¥ rlog(n’(j)—l—m'(j))+logd’(j)]=

v )=y, v )=y,
JEN JEN
= Y \v)=68P)< D)< ¢ logi.
v on P

Let P be any path in M;. P is obtained [rom some path P in N; by substituting some
path P (v) from N ; for each oracle node v with \(v) = g; (5 EN). Then

{P)=A+ . 3 §P(w)<Aa+ 3 D(N";)
MNv)=yg; Nev)=y,
SA+H ¥ oelog S 2 (A—I*l 3 logy) < 2¢2%logs,
ANev) =g, Mv)=y,
where all sums are over the vertices v on P. Hence the depth of M; is O (logi ). The
size of M; is polynomial since at most polynomially many nodes (from N * J-) are being
introduced for each of the polynomially many nodes of N;. Also M is L -uniform, and

therefore an NC ¢ -reduction from f to h,andso f < k.
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The preceding shows that < is reflexive and transitive on Rat p. Hence so is ~.
Also, ~ is symmetric by definition.

(iii) Let C' be one of these complexity classes, f =(/i)ien € Ratg, g € C, and
N = (N;)ien a NCg -reduction from / to g. A calculation as above shows that /
can be computed by an appropriate network. It remains to verify that deg(f;) =90,
(We identify g; with the piecewise rational function of a network computing ¢;, and f;
with Yy, « g.)

There exists some ¢ € R such that for all F € £, i € N, and Boolean assignments
m for N; with A, C F"(') dense (see Section 5), we have D () < 1¢, where
a = (N; ), is an arithmetic circuit over F . Fix some ¢, F, t, T, a. Just as one proves
Fact 5.2, we show by induction on the depth D (v) of a node v of a that
degy, < 2P(*). This claim is clear for D(v)=0, and for \(v) € Qf. Suppose now
that N(v) = g;, that g; has n = o,(g;) (arithmetic) inputs, and that the in-edges to

v come from nodes wy, . .., w,. Set d = max D (w; ). Then
1<k <n

d + "logn + logdeg(g}-).l <d + §g;)=D(v),
d D
degy, < degyg; -1IS]:::;I.Eﬂdegww;r < degyg; 2% < 2 (v),

using Theorem 4.3. [

Note that with a cost §(g;) = 1 - instead of our convention log(n +m ) + log(d )
for an oracle node with (n,m ) inputs and of degree d - we would only have that
("f <g” and g ENCE ) implies f ENC,*!. However, NC& (ARB -DEG ) is closed
under ”NCg (ARB-DEG )-reductions”, where the cost of g; is only
&g;) = [log(n +m ) 1. Theorem 8.3 also holds for the P -uniform and non-uniform
classes.
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9. Linear algebra: determinant

In this section, we consider some of the most basic functions from linear algebra,
including the determinant, characteristic polynomial, and the solution of nonsingular
equations. It turns out that they are all equivalent, and can be solved in depth
O (logn ).

Let £ be a set of fields. (The case usually considered for algorithms is where
Y = {F} consists of a single field; the point of the new notion of "universality” is to
make observations like "(standard) matrix multiplication is the same algorithm for any
field” into a precise statement.) Consider the function DETERMINANTy € Rat s,

where

dom(DETERMINANTy) = | J F™,
Fe ¥
n>1

DETERMINANTy(a) = det(¢) for F € S and a € F*,
with appropriate conventions for interpreting a € F * as an n X n -matrix. Similarly
we define the following functions from Rat g, for any n €N and F € L.
MATMULTs: computing the coefficients of the product of two n X n —matrices over
F;
CHARPOLYy: computing the coefficients of the characteristic polynomial of a square
matrix over F ;

MATPOWERSy: computing the first n powers (A4, A2 - - -, A™) of a matrix
A c Fﬂ- xn .

ITMATPRODg: computing the “iterated” product A4, - - A, of matrices A,
Agy g A € BTN

NONSINGEQg: computing the unique solution z € F* to Az = b, given the non-

singular matrix A € F®*" and vector b € F";
MATINVg: computing the inverse A ~! of a nonsingular matrix A € F" *Xn |

Using an obvious algorithm for matrix multiplication, it is clear that
MATMULTy € NC4¢ ; similarly MATPOWERSy, ITMATPRODy € NC#. On the
other hand, it is not obvious how to perform Gaussian elimination very fast in parallel.
Fortunately, very fast parallel algorithms have been found:
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Fact 9.1. For any set T of fields we have:

() CHARPOLYy < ITMATPRODsq,

(i) CHARPOLYy € NC¢. O

(i) was proven by Berkowitz [1984], and later by Chistov [1985]; (ii) then follows from

the above remarks. (ii) had previously been shown by Csanky [1976] in characteristic
zero, and by Borodin, von zur Gathen & Hoperoft [1982] for arbitrary fields.

We will use the following construction in several places. Let R be a ring, and z an
indeterminate over R. Forany A € R [z]* X", write

A =A(0)+A(1)m +A(2)$2+ LT

with A() € R*X" for all i. For any d € N, the following mapping associates to A a
block matrix consisting of d X d blocks, each of size n Xn .

(bd =¢'d,n,R,r= R[x]ans S (Ran)dxd,

A 4Q) ... 4(d-1)
0 A9 ... 469

Gail) e s ) e :
0 0 T A[O)

Lemma 9.2. ¢, is a ring homomorphism with kernel z¢-R [z |* **. O

Theorem 9.3. For any set ¥ of fields DETERMINANTy, CHARPOLYy,
ITMATPRODg, MATPOWERSy,, MATINVy, and NONSINGEQy, are equivalent.

Proof. Leaving away the subscript ¥, we show DETERMINANT < CHARPOLY <
ITMATPROD < MATPOWERS < MATINV < NONSINGEQ < DETERMINANT.
Let F € L.

1. DETERMINANT < CHARPOLY is trivial: x(4 ,0) = (-1)" det A and (-1)*
can be computed in depth [logn ].

2. CHARPOLY < ITMATPROD is Fact 9.1 (i).

3. ITMATPROD < MATPOWERS: Given A, ---,A, € F**", define
B e (Fﬂ xn ){n +1)x(n +1) by

¥ 4 absn

Then
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0 ¥
4. MATPOWERS < MATINV: Given A EFPE, let

B = ¢, 41(1-Az) € (F* X )n+UX(2+1) Then ¢ . ((Az)**1) = 0, and
B™ = (1-¢p 1(A2 )] = 3 ¢y 11(4z) =

i>0
FEA AT e ]
=¢as( 3 (Az))= T SR
0<i<n . A
L 0 NS

5. MATINV < NONSINGEQ: Given a nonsingular A € F" X" solve Az; = e¢;
for 1 <4 < n, where ¢; is the ¢-th column of 7 and z € F*. Then z; is the ¢-th
column of A 7L,

6. NONSINGEQ < DETERMINANT follows from Cramer’s rule. []

Some of these reductions are in Csanky [1976] (in characteristic zero), Borodin, von
zur Gathen & Hoperoft [1982], and Cook [1985].

Let X be a set of fields. We define the complexity class DET y, as

DETy = { g € Ratg: ¢ < DETERMINANTy, } = {DETERMINANT}".

By Fact 9.1 (ii), DETy C NC¢. Trivially, DETERMINANTY, is complete for
DET g, and from Theorem 9.3 we conclude:

Corollary 9.4. For any set ¥ of fields, DETERMINANTy, CHARPOLYy, ITMAT-
PRODg, MATPOWERSg, MATINVy, and NONSINGEQg, are complete for DET' .. [

Open Question 9.5. For which of the inclusions NC¢ C DETy C NC¢ does equal-
ity or inequality hold?
The most plausible conjecture seems NC'¢ 5% DETy = NC¢#. Eberly [1984] has

shown that the determinant (and characteristic polynomial, inverse of nonsingular
matrices) of n X n -matrices of bandwidth m can be computed in depth O (logn logm ).

Let us define for any m € N

BANDDETS, ,,: computing the determinant of matrices in F* *" with bandwidth m
and F € %.
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Fact 9.6. Let £ be a set of fields.
(i) BANDDETg,, can be computed by (L -uniform) arithmetic networks over % of
depth O (logn loglogn ) and size n @),
(if) If ¥ C Infinite, then BANDDETg ,, € NC¢ (#-UNIFORM).
(ili) If £ C Charzero , then BANDDETy ,, € NC .
We want to examine the computational power of computing just a single power of
a matrix. To this end, suppose we are given a function £ : N — N and define
ONEPOWy; : computing A ("), given A € F" X" and F € .

Clearly k(n) =1 does not yield an interesting function. However, it turns out
that ONEPOWyg ; is complete for DET g when k (n ) is polynomial in n .

Theorem 9.7. Let © C Charzero. Suppose that k : N — N is computable by a
Boolean circuit of logarithmic depth, and that positive p, ¢ € Q are given such that
n? < k(n) < n?. Then ONEPOWy, € DETy, and it is complete for DET 5 under
NC ¢ (P ~-UNIFORM )-reductions.

Proof. Let Fe¥X. As usual, we leave away the subsecripts.
ONEPOW < MATPOWERS: We assume ¢ € N. Given A € F*" X" et j — k(n)

and let 0 < d, -- -, d, < n be the digits of the representation of ; in base n, i.e.
do+ dyn + -+ +dn? =j. Clearly dy, - -+ ,d, can be computed in depth
O (logn ). Iterating MATPOWERS ¢ times, compute (A A% v SRR A4S, At

AN <o AT RIS ARTY L e Gl snd i)
1 d <n, 0<1i <gq. Compute Al s | PR et
=A%4%4" ... 4% These steps can be performed in (log-space uniform) depth
O (logn ).

MATPOWERS < ONEPOW: Given A € F*X"  compute r = |-n 1/» ‘1].

Then k(rn) > (rn)?.> ( [n k=1 -ln ) = n. Now compute B = ¢, ,(1+Az) €
(Frxryntixatl and B¥(m) = ¢, _((1+Az )*(™). The first row of this block matrix

contains T A, A% -+~ L A® multiplied by the scalars
[ k(sn)] : [ k(;n)] ; [ k(;n)] A B [ ic(:;n)] respectively. These scalars are

all nonzero, since char ' = 0, and can be computed in P -uniform logarithmic depth
(Beame, Cook & Hoover [1984]). O

Open Question 9.8. Find sufficient and necessary conditions on ¥ and k& such that
ONEPOWy, , is complete for DET y. In particular, is MATPOW < ONEPOW, , say

for k (n ) = n, under log-space uniform log-depth reductions?
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10. Linear algebra: rank

The problems of Section 9 all concerned rational functions. In this section, we con-
sider problems from linear algebra involving piecewise rational functions which are not
rational functions, such as the rank of matrices.

As usual, ¥ is a set of fields, F € &, and n € N. We first consider the following
auxiliary problem:
ITMATPRODI[X, Y |g: computing the "iterated” product A 4, - - - A, of matrices A |,
Ay, ~ -, Ay €F[z,y]"*", with z and y indeterminates over F, and each entry of
A; a polynomial in z and y of total degree less than n .

The indeterminates z and y are only placeholders here; the input is given by ele-
ments of F .

Lemma 10.1. For any set © of filds, ITMATPROD[X,Y ]z < ITMATPRODy
€ DETy CNCZ2.

Proof. Let F € X, z,y indeterminates over F, and d,n € N. For the reduction, we
apply the mapping of Lemma 9.2 twice to get x: F [z,y|* ** — F™°%X"° a5 the com-
position

n®n Flz]y
F[:B,y] 448 (F[:I:]ﬂ Xn)n’xﬁ:_-:F[x]n“Xna Sy

¢ﬂﬁlna,F¢z

3 2 2 5 5
P (Fﬂ Xfll)ﬂ xXn =" Xu_

The coefficients of A A, (as above) are contained in the matrix x(4,)x(4,)€
F™*Xn°  This shows the reduction; the remainder is clear by Corollary 9.4 and Fact 9.1
(i). O

Consider the following ”combinatorial” functions from linear algebra. As usual, T is
a set of fields, F €%, and n € N.
MATRANKGj: computing the rank (encoded in unary) of a matrix A € F" %",

BASIS;.: computing an n-bit vector marking some subset of the columns of

A € F™*" that form a maximal linearly independent set;
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SOLVABILITYg: computing a bit indicating whether the equation Az =— b has a
solution z € F™,given A € F*"*® and b € F";
MAXMINORg: computing a marking of rows and columns forming a maximal non-

singular minor of a matrix A € F" X",

IMAGEg¢: computing a basis for the image of F* under the linear transforma-
tion on F" specified (under the standard basis for F™) by
A g FHany

The following crucial result was shown by Mulmuley [1986].
Fact 10.2. For any set T of fields,
(i) MATRANKg < ITMATPROD(X,Y |y,
(i) MATRANKy € DETy C NCg£. 0O

Mulmuley [1986] reduces MATRANK to calculating the characteristic polynomial
of a matrix in F [z,y]" *", with each entry a polynomial of degree less than 3n . Using
Berkowitz’ [1984] algorithm (Fact 9.1 (i)), this in turn reduces to ITMATPROD[X,Y].
(ii) follows from Lemma 10.1. Ibarra, Moran & Rosier [1980] had proven (ii) for
Y C Real, and Borodin, von zur Gathen & Hopecroft (1982] had shown that
MATRANK; € "random” NCg?, for any field F .

An inconvenience is caused by the fact that BASIS, MAXMINOR, and IMAGE are
not functions. We want to say that any function satisfying the definition solves the
problem. To make this more precise, we have to extend our complexity classes. Let
F € X, n € N. As an example, BASIS; (n ) consists of all piecewise rational functions
f =0 r&, . an)a‘eB" with (n2,0) inputs and (0,7 ) outputs solving the basis
problem, so that

VieB* VA eU; Vi <n [B=i,,

and the rows A;-yy) of A (i.e. the rows A; with /8 = T) are linearly independent of
rank equal to rank A . IHere we assume some fixed correspondence F*° —, F7Xn , SO

that | J U; = F"*", and A; is the k-th row of A € F**", Then BASISy =
iEB"

(J BASISp(n), and an arithmetic network N over F solves BASISp(n) if

FeXZ

neN

Yy € BASISy (n).

More generally, if N is an arithmetic network over F with (n ,m ) inputs and (v,u)
outputs, and @ a set of piecewise rational functions over F', each with (n,m ) inputs
and (v,u) outputs, and ¥y € ®, then we say that N computes ®. Now we have the
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final definition of our complexity classes.
Definition 10.3. Let ¥ be a set of fields.
Raty = {® = (®f ; )peg: I L - uniform network family N = (V; ); en
fEN

such thatfor all F € ¥ and ¢ € N, N; over F computes ® ; }

Py = {® C Ratg: I L - uniform network family N = (IV; ); o, with
N; computing ®p ; over F', S(N;) = i °(1), and thick-deg(vy ) = i ©()}.
NC% and NCy are defined analogously. [
We define the complexity class RANK y, as:

RANKy = { [ € Raty: [ < MATRANKj } = {MATRANK}®.

Theorem 10.4. For any set T of fields,

(i) MATRANKj, IMAGEg, MAXMINORy, BASISy; and SOLVABILITYy are complete
for RANK 5.

(i) RANKgs C DET5.

Proof. (i) Leaving away the subscript £, we show MATRANK < IMAGE < MAXMI-
NOR < BASIS < SOLVABILITY < MATRANK. Let F € £ and n € N.

1. MATRANK < IMAGE is trivial, since rank A = dim im(4 ).

2. IMAGE < MAXMINOR: Given A € F" %" a basis for im(A ) is obtained by
taking the columns of A corresponding to those in any maximal nonsingular minor of
A.

3. MAXMINOR < BASIS: Given A € F"*" obtain a basis b,, ..., b, € F"
for the column space of A. Pad b,,..., b with n — k zero columns to form a
matrix B € F"*" . Obtain a basis for the row space of B. The column and row

markings so computed ‘mark a maximal nonsingular minor of A .

4. BASIS < SOLVABILITY: Given A € F®*" with columns 8 i 8 € FY,
=1
determine for all 1, 1 < ¢ < n, whether the system Y, % a; = @¢; has a solution
i=1 |
z € F" (using the appropriately padded n Xn-matrices). If the ¢-th system has no
solution, include @; in the basis.

5. SOLVABILITY < MATRANK: Az = b has a solution if and only if
rank A =rank [A | b]. Adding a zero row to [A | b] does not change its rank and
makes it square.
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(ii) follows from Fact 10.2 (i), Lemma 10.1, and Theorem 9.3. O

Consider the following functions:

INDEPENDENCEy: deciding whether z,, ..., z; € F™ are linearly independent;

SINGULARy: deciding whether a matrix A € F™ X" is singular;

EQs: given A € F**" and b € F™®, compute £ € F* and ¢ € B
satisfying [(¢c = T) <> (3l y Ay =b) = (Az = b ));

NULLSPACEy: computing a basis for the null space of A € F ™ X",

Clearly SINGULARy, < INDEPENDENCEy < BASISy € RANK .

Open Question 10.5. Is either of SINGULARy or INDEPENDENCEy, complete for
RANK ¢?

Theorem 10.6. EQy and NULLSPACEg are complete for DET s.

Proof. Leaving away the subscripts, we show EQ < NULLSPACE < NONSINGEQ <
EQ. Let F € X and n € N.

1. EQ < NULLSPACE:Let A € F"*" and b € F™. Forallz € F", Az = b
if and only if [A |b][:;] = 0 with y = -1. Determine a basis z,, ...,z € F**!

for the null space of the matrix [A | b | made square with a zero row. If 2 n4+1 =0 for

all 7, 1 <1 <k, then no solution z € F™ to Az = b exists. Otherwise, let $,

1 <t <k, be such that z; , ., = w £ 0, and define z =i(z,-1, . ey BRNE R,
: w

Then Az = b.

2. NULLSPACE < NONSINGEQ: Given A € F™*" determine a maximal non-
singular r Xr-minor M of A, using that MAXMINOR < NONSINGEQ by Theorem
10.4 (ii). To simplify notation, we assume that M is the principal r X r-minor of A .

Solve the (nonsingular) systems Mz; = y; forall ¢, r < i < n, where y; € F" con-
sists of the first r rows of the i-th column of A. Then a basis for the null space of A
Bl 00,0500 00 0 <i<n ), Where the —1 associated with z; appears in the
t-th row.

3. NONSINGEQ < EQ is trivial. O

We have the following hierarchy of complexity classes in linear algebras:
NCZ} G {SINGULARE}’ C {INDEPEI\IDEI'\TC'EE}‘t C RANK 5y, C DETy C NC§.
Kaltofen, Krishnamoorthy & Saunders [1986a, 1986b] give parallel algorithms to

compute the Smith normal form, Hermite normal form, elementary divisors, and Jordan

normal form of matrices over a field F'. Their algorithms use random choices, made
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uniformly from a (sufficiently large) finite subset of F. (If F is a small finite field, one
may have to extend the field, in order to make the algorithms work; see Eberly [1986]
for very efficient parallel methods for such extensions.) The methods are "Las Vegas”:
the output is either the correct answer, or "failure”, the latter with controllably small
probability - and the algorithms run in depth O (log®n ) and size n ?(1), for input size
n. (An appropriate name for the corresponding complexity class would be ZP —NC’FQ,
analoguous to the Boolean probabilistic class ZPP = "zero probability (of incorrect-
ness) polynomial time”.) The Jordan normal form requires the calculation of the eigen-
values. If these are given, they compute the usual Jordan normal form. In general, we
do not know how to factor polynomials fast in parallel (see Section 11); without the
eigenvalues, they compute a variant of the Jordan normal form consisting of blocks
corresponding to eigenvalues belonging to the same factors in a ”relatively prime basis”,
a partial factorization of the characteristic polynomial.

Open Question 10.7. For any field F, is any of these problems in NCp?
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11. Polynomials

We first consider arithmetic of polynomials. Most problems are trivially in NC?2,
but, in fact, can be proven to be in NC'!. The problem of factoring polynomials is not
solvable in our model over Q, for example (and seems hard in parallel in a Boolean
model), but efficient algorithms are known over finite fields. To describe their running
time appropriately, we introduce a new notion of universality which quantifies the
dependence on the characteristic.

Let ¥ be a set of fields. We start with the following problems in arithmetic of
univariate polynomials, for a given input size n € N:

POLYMULTy: Computing the product of two polynomials of degree less than n

in F[z], where F €T, z is an indeterminate over F, and a poly-

nomial f = fo+---+[f,z" € F[z| is represented by its

coeflicient sequence (f o, . .., [, )-

ITPOLYPRODg: Computing the product of n polynomials, each of degree less than
",

POLYINTERPOLy: Given a list of n pairwise distinct points in # and of n values,
compute the coeflicients of the unique polynomial of degree less
than n that interpolates the given values at the given points.

POLYDIVy: Compute the quotient and remainder of the division of two poly-
nomials of degree less than n .

POLYINVy: Compute the inverse of a polynomial f € F[z] modulo z",
assuming f (0) £ 0.

POLYPOWERSy: Compute the first n powers of a polynomial of degree less than n .

ELSYMMg: Compute the n +1 elementary symmetric functions in n elements
of F.

Clearly, POLYMULTy € NC¢ . All problems are easily reduced to linear algebra,
and, by the results of Sections 9 and 10, in DETy C NCg#. (Note that
POLYINTERPOL; € NC{° for any finite field F, since it is a finite function.) Reif
[1983] proved that some of these problems are in NCy' if F supports a Fast Fourier
Transform. Eberly [1984, 1986] generalized this approach considerably, and proved the

following.
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Fact 11.1. Let £ be a set of fields.
(i) POLYINTERPOLg < ELSYMMjy < ITPOLYPRODy, and POLYPOWERSy ~
POLYINVg ~ POLYDIVg < ITPOLYPRODy. For £ = Infinite , the first three

problems are also equivalent under NCg¢ (%-UNIFORM) reductions. For
¥ = Charzero , all problems are equivalent.” (See Figure 11.1.)

(i) ITPOLYPRODyy inite € NCrlinite (L ~L -UNIFORM),

ITPOLYPROD Charzero € NCC}mrzero (L -L ‘UNIFORM) a NCC%arzem (P i
UNIFORM), |

For any F € Finite , ITPOLYPRODy € NCy!'(L -L -UNIFORM).

(ili) ITPOLYPRODg can be computed by an L -uniform family of arithmetic networks
over T of depth O (logn loglogn ) and size n 2(1), O

NC ! (P-UNIFORM)

ITPOLYPROD

POLYDIV
POLYINV
POLYINTERPOL OB
Infinite Fields

Figure 11.1

The reductions in (i) imply that (ii) and (iii) also hold for the other problems of
Figure 11.1. Some of these results were first proven by Reif [1983], under P-P-
uniformity and assuming that the ground fields supporsst a Fast Fourier Transform.
Bini [1984] showed inversion of triangular TBplitz matrices in logarithmic depth, also
assuming existence of roots of unity and certain other roots. Later, Bini & Pan (1984,
1986] took up Eberly’s approach, showed equivalence of polynomial division with tri-
angular T®plitz inversion, and obtained depth O (logn loglogn) (and O (logn ) if the
field is large enough), ignoring the issue of uniformity for constants; however, they
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improved previous size bounds. The most ambitious goal for these problems would be
to put them into (L -uniform) NCpl,,,; the results show interesting trade-offs between

uniformity for the circuit part, uniformity for constants, depth, and universality.

Problems concerning the factorization of univariate polynomials fall into two
categories:

1. 7rational factorizations”, such as ged and squarefree factorization,
2. [factorization of squarefree polynomials.
Fact 11.2. For any set £ of fields, the following problems are in DETy C NC¢ :

(i) (von zur Gathen [1984a]) Computing the ged and lem of many polynomials, and
computing all entries of the Extended Euclidean Scheme of two polynomials.

(i) (von zur Gathen [1986]) Chinese remainder algorithm, partial fraction decomposi-
tion, Padé approximation, Cauchy interpolation, and rational Hermite interpola-
tion.

(iii) (Glover [1984]) Simultaneous Padé approximation.

(iv) (von zur Gathen [1984a]) Computing the squarefree decomposition of univariate
polynomials, if £ C Charzero. O

All the above problems can be formulated in terms of linear equations. The
interest in the proof of (ii) is in showing that all these problems can be viewed as

instances of a general "conversion” problem; that proof does not make use of the results
of Section 10 which were not known at the time.

Open Question 11.3. Is any of these problems in Ncpl, or complete for DETp ?

Our model is not appropriate to address the question of factoring polynomials in
characteristic zero, say in Q[z|. No arithmetic network N over Q can decide on input
a €Q whether z°-a¢ € Q[z] is irreducible or not: since infinitely many such polynomials
are irreducible, there would exist a Boolean assignment 7 for N such that A, C Q is
dense (i.e. cofinite), and the output of N is "irreducible” for all ¢ € A ,. But Q\A , is
finite, and so N does not work correctly.

Thus one can only hope for a Boolean fast parallel factorization algorithm in Q[z |,
with the binary representations of the coefficients as inputs. In this model, the
polynomial-time algorithm of Lenstra, Lenstra & Lovéisz [1982] gives an NC -reduction
to the problem of computing short vectors in Z-modules. The most notorious of parallel
Boolean problems with a number-theoretic flavour is that of computing the ged of two
integers; this problem is also reducible to the short vector problem (von zur Gathen
[1984a]). Kaltofen [1986] proves that absolute irreducibility of bivariate (and
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multivariate) integer polynomials can be tested by Boolean circuits of poly-logarithmic
depth and polynomial size; in our model, his method shows that the problem of absolute
irreducibility of bivariate polynomials is in NCgyursero -

Let FACTORp be the problem of factoring polynomials in F [z], i.e. on input
(ap, . .., a,) € F, ;, output the vector of coefficients of the (monic) irreducible factors
of [ =apt+ - +a,2" € F[z], together with Boolean vectors giving their degrees
and multiplicities. Then

FACTORq ¢ Rat g,
FACTORy € DETy,

for F finite; the latter by the deterministic parallel version of Berlekamp's algorithm
(see von zur Gathen [1984a, 1986b]). Suppose F is finite with ¢ elements and charac-
teristic p. In FACTORp, p and ¢ are constant. However, it is quite important to
consider how the size and depth of networks over Finite depends on p and ¢. For the
computation of large powers, say a2", "there is no speedup; there is a minimum of n
multiplies, and each must be done in sequence” (Jordan [1982]). Although this intuition
is correct over infinite fields, the study of the problem showed that it fails over finite
fields, and led to the observation that over large finite fields of small characteristic, the

model of arithmetic networks over F is not appropriate for parallel solution of some
problems:

Fact 11.5. Let p be aprime, K = GF(p),e>1,F =GF(p®),0<m < p*®, and
g2 F — F with 7f%a) = a™ for a €F. Then
(i) For any arithmetic circuit over F computing m/ with depth d we have
d > min{logm , log(p * -m )}.
(ii) =" can be computed on arithmetic circuits over K of depth O (loge log(ep)) and
size (e logp )°(N. O
(i) is in von zur Gathen [1984b], and (ii) in Fich & Tompa [1985], also in von zur
Gathen & Seroussi [1986]. As a special case, we see that if ¢ /2 < p < e and
p¢2<m < p°l, then 7 can be computed by arithmetic circuits over K of size
e 9(1) and depth O (logze ), but any arithmetic circuit over F computing 7/ has depth
(U(e ). Large powers are used as subroutines in many algorithms, e.g. in the factoring
procedure, and for determining whether a field element is a square (if p is odd).

Arithmetic networks over F' are not appropriate to discuss parallel algorithms over
F, since the lower bound (i) over F is beaten by the upper bound (ii) over K. Thus,
even to solve problems over F, we only consider arithmetic networks over K which
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have as input and output vectors of elements of K representing an element of F .
Furthermore, we want to express the fact that Berlekamp’s algorithm works over any
finite field, with size proportional to the characteristic p (deterministically) or logp
(probabilistically). In fact, it is even unlikely that FACTORp;,;, € Ratpipie , since
over a finite field of characteristic p , Berlekamp’s algorithm computes p -th powers; this
does not fit into our model.

So now we consider a finite field F = GF (p*®) as given by a prime p € N and a
monic polynomial ¢ € Z[t] of degree e, with all coefficients of g between 0 and p -1,
such that g modp € GF (p)[t] is irreducible, and F = GF (p )[t]/(¢ modp ). An ele-
ment a of F is given by (ap ...,e,_)€EGF(p)?, with a = au+
- 4a, 1t 'mod (g mod p). (Any arithmetic circuit over F computing ¢ |— a,
has depth Q(e ) (von zur Gathen & Seroussi [1986].)

Definition 11.8. Let T C Finite consist of finite fields. A ¢ —universal network (for
"characteristic-universal”) is a deterministic Turing machine M which on input p and
g of degree e as above, with integers encoded in binary, and also ¢ encoded in unary,
produces a description of an arithmetic network Ny 4i over any K = GF (p)€ L

(intended to solve problems over GF (p)[t]/(g modp)). We consider three resource
bounds (all " O (1)” may depend on 1 ):
(i) £ SN, :)=1(ep )°M) and D (N, ;i) = (log(ep ))°(), then M is P-L-
universal (for "size polynomial and depth poly-logarithmic in i A
(i) If M is P~L -universal and S (N, , ;) = (e logp )0, then M is L L -universal.
(iii) If M is L-L-universal and D (N, , ;) = (log(e logp ))°W), then M is L-LL-
universal. [J
Note that M is not an arithmetic network in our sense, but each (Ny gidienisa
family of arithmetic networks over GF (p ). In each case, the size is polynomial and the
depth poly-logarithmic in e. We then obtain complexity classes like
NCpinite (L —L ~universal), consisting of problems f for which there exists an
L -L —universal M such that for all F € Finite , N, 4 i is L =L -uniform, has size and
degree 1 9(1) and depth (logi )°(), and solves f for GF (p¢) = GF (p )[¢]/(g modp ).
For a finite field F we have that e.g. NCp (P -L -universal) C NCp. -
Fact 11.7. Let £ = Finute .
(i) POLYMULTy € NCg¢ (L -LL —universal).
(ii) The powering function = with #f(a)=4a™ for a«a €EF €X is in
NC ¢ (L -L —universal).
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(iii) The problem of computing the squarefree factorization of univariate polynomials is
in NC ¢ (L -L —universal).

(iv) FACTORg € NC§ (P -L —universal).
(v) FACTORg € ZP -NC ¢ (L -L —universal).

(vi) Multivariate polynomials over £ can probabilistically be tested for irreducibility in
depth (lognp )° (V) and size (nlogp )P, O

(See Section 10 for "ZP-NC”.) For input size i, = has as inputs the binary
representations of m < 2' and ¢ € F. (iii), (iv), and (v) follow from von zur Gathen
[1984a], (v) from von zur Gathen [1985a). Here, n is the input size, where the polyno-
mial may be given either by all its coeflicients up to its degree ("dense representation”),
or only its nonzero coefficients ("sparse representation”), or even by a straight-line pro-
gram. Instead of just testing for irreducibility, one can even determine the degrees and
multiplicities of the irreducible factors (the ”factorization pattern”).

Open Question 11.8. Can one factor multivariate polynomials over finite fields, given
by straight-line programs, in depth and size as in (vi)?

A more difficult problem than factoring polynomials is to determine the solution set
of a system of polynomial equations. The more general problem of ideal membership is
complete for exponential space (Mayr & Meyer [1982]). According to Chistov & Gri-
goryev [1984], the solution set can be determined in quasi-polynomial sequential time
ollogn )°% - por parallel algorithms, Ben-Or, Kozen & Reif [1984] prove that formulas of
the theory of real closed fields can be decided in double-exponential time and exponen-
tial space, and also in exponential parallel time. For a fixed number of variables, the
problem is in Boolean NC'. Ben-Or, Feig, Kozen & Tiwari [1986] show that the roots of
a univariate polynomial with only real roots can be approximated by Boolean circuits of
depth (logn )°(1) and size n 2(1), where n is the input length plus the required precision.

Permutation groups offer a variety of algebf'aic questions, which can only be
addressed by Boolean éomputations; see McKenzie & Cook [1983] for parallel aspects.
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12. Conclusion

The area of parallel algorithms for algebraic problems is young and lively. We
have described a framework in which most algorithms can be discussed. Many interest-
ing problems have been classified as to their relative and absolute complexity. The sub-

ject is teeming with open questions, some of which may be relatively easy.

Beyond the mostly elementary problems mentioned here, a more general question is
what parts of algebra (or mathematics) can be put into NC' (or P).
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