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REPRESENTATIONS AND PARALLEL COMPUTATIONS FOR
RATIONAL FUNCTIONS*

JOACHIM VON ZUR GATHENT

licit written per-

bstract. Representations of univariate rational functions over a given base of polynomials are con-
si ‘gﬁed and a [ast parallel algorithm for converting from ane base representation to another is given. Special
cas§ of this conversion include the following symbolic manipulation problems: Taylor expansion, partial
fraéﬁ,on decompuosition, Chinese remainder algorithm, elementary symmetric functions, Padé approximation,
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and; §arious interpolation problems. If n is the input size, then all algorithms run in parallel time O(log® n)
and Jise n®" processors. They work over an arbitrary field.

i'j(ey words. parallel processing, algebraic computing, symbolic manipulation, interpolation, Chinese
reridinder algorithm, Padé approximation

d constraints invol
for noncommerci:

1. Introduction, This work forms part of an endeavour to understand the power
ofjmarallelism in symbolic computation: for which problems in algebraic manipulation
wi ;E a polynomial-time sequential solution do fast parallel algorithms exist? Answers
mlui is question may help to understand the power of parallelism in general: one may
v:ccmipare the power of different models of concurrent computation by testing on which
médels these algorithms can be implemented.

é In this paper we present fast parallel algorithms for various problems in algebraic
:cufriputdtlon It soon became apparent that the algorithms for all the problems con-
Qs1c§med here would follow the same pattern, namely conversion between different
\,reggesentatlons of the given rational function. So we start by introducing in § 2 the
xm}i&m of representations of rational functions in a given “‘base” of polynomials. This
passes several ways of representing rational functions, which are
cially familiar if the rational function is a polynomial: the sequence of coefficients,

of values, Taylor series, and a general list of values in “Hermite format”. It turns
that if numerator and denominator degrees are correctly specified, then usually

not always) such representations also determine a rational function uniquely.
We describe in § 3 two fast parallel algorithms that convert the standard coefficient
ptesentation of a rational function into a **base representation”, and vice versa.
El?ilblnmg them we get an algorithm that converts the representation of a rational
u§ tion in one base into that in another base. Section 4 discusses the existence question

f epresentations. This turns out to be slightly less straightforward than one might
?201 and is illustrated by the well-known fact that the rational functions required
inBadé approximation or rational interpolation may fail to exist.

Section 5 presents as application of the general conversion algorithms fast parallel
meélods for the following problems in symbolic manipulation: Taylor expansion,
deﬁm] fraction decomposition, Chinese remainder algorithm, elementary symmetric
Sfum:nons Padé approximation, and various interpolation problems. As our model of
gpaﬁllel computation we can take an arithmetic network, which is a directed acyclic
Zgrgbh such that each edge either carries arithmetic values from the ground field or
T’B(ieglt.dn values, and with the following nodes: arithmetic operations (+, —, %, /, fetch-
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ing a constant), tests (a = 0?) of an arithmetic value a, Boolean operations, and selection
of one of two arithmetic inputs according to the value of a further Boolean input. The
algorithms can also be implemented on an algebraic PRAM. The networks all have
depth (= parallel time) O(log” n) and size (= number of processors) n®"), where n is
the input size. They work over an arbitrary ground field.

The representations discussed so far are sufficient to solve the computational
problems of § 5. But their theoretical shortcomings warrant a generalization, so that
in § 6 “Laurent representations” are introduced. They have the desired feature that
rational functions now always have a unique representation.

The dual relationship between evaluation at many points and interpolation has
been observed for a long time; also the fact that both computational problems consist
in converting the representation of a polynomial from one format to another; see e.g.
Strassen [1974]. However, one usually employs two quite different-looking sequential
algorithms to solve the two problems. Besides the unification resulting from our
approach even for polynomials, the fact of including rational functions into this
framework seems to be even more interesting from a computational point of view,
making bedfellows of such distinct-looking problems as Hermite interpolation and

Padé approximation. We leave as an open question how well this approach translates
into the sequential setting.

2. Representations of rational functions. Let F be an arbitrary field. A sequence
B=(b,, - -, b,) of pairwise relatively prime polynomials b,, - - - , b, € F[x]\ Fis called
a base. A sequence N=(n,, - -, n,) € N” with n,= 1 is called a precision (for B), and
n=Y1si=p m; deg b; is the total precision of (B, N). A sequence

rz(rIU: s rl,nlul; ¥ A rpﬂa b srp_np I)

such that for all i,j with 1=i<p and 0=j<n,

ry € F[x],
deg r; <deg b,

is called a representative in base B with precision N, or ( B, N)-representative for short.
R(B, N) is the set of all (B, N)-representatives. R(B, N) can be identified with F".

DerFINITION 2.1. Let rc R(B, N), and g, he F[x] with h#0. Then r is called a
weak (B, N)-representation of (g, h) if for 1 =i=p we have

g=h Y rpb{ modb}.
O=j<n;

r is called a (B, N)-representation of f=g/he F(x) if in addition

ged(by - - b, h)=1. 0
In other words, if we set

L= 2: rub:!,

O=j<n
then f=r; mod bi" is given with “precision n; deg b, and r, is developed according
to powers of b,

One verifies that for given B, N, f, r the property “r is a (B, N)-representation
of f* does not depend on the choice of polynomials g, h such that S=g/h and
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ged (by - - - by, h) =1. Ideally, we would like our representations to have two properties:

Representability: Given (B, N), every fe F(x) has a unique (B, N)-
representation.

Convertibility: There exists a fast parallel algorithm for converting rep-

resentations from one base into another base.

As they stand, both properties fail to hold; but fortunately this failure is only marginal.
Representability is discussed in § 4 and Remark 5.4, and it turns out that almost all
rational functions have a unique representation. The second conversion algorithm of
§ 3 may return a pair of polynomials of which the input representation is only a “weak
representation’; this is the reason for introducing the latter. Again, for almost all
inputs this weakness does not appear. Note that it does not make sense to speak of
weak representations of a rational function, since the above congruence alone would
allow any (B, N)-representative r to represent any rational function f=g/heF(x),
by writing f = (bg)/(bh) with b=b]: - - - b’». The gcd condition rules these unwanted
representations out.

In § 6, we introduce the more general ‘““Laurent representations”. These then have
both desired properties, and thus are the appropriate objects for this theory. Though
inappropriate from a theoretical point of view, there are two reasons for introducing
the representations and weak representations as above: Firstly, they are easier to define
and work with, and secondly, they are sufficient to discuss the applications in § 5.

If N=(ny,-++,n,) and M=(m,,- -+, m,) are two precisions for B, m; = n; for
all i, and re R(B, N) is a representation of f. then one obtains a representation in
R(B, M) of f by truncating the ry’s with j=m,

Before proceeding with the general development, let us look at a few familiar
representations that fit into this framework. As examples we will use n =5 and the two
rational functions

fi=x*-x*+2x*-3x-2¢ F[x], fi=— x—EF(x]-

When B and N are given, we will write r=p(f) if r is a (B, N)-representation
of f.

1. Sequence of coefficients. In this most familiar of all representations we have
p=1, B=(x) and N=(n). For a polynomial f=Y¥,-;fx'c F[x], the (B, N)-
representation p(f)=(f,, -+, f,-1) is simply the sequence of the first n coefficients
(irrespective of the degree of f). For a rational function f (with nonzero constant term
in the denominator polynomial), p( f) is an initial segment of the power series expansion
of f. In the example, N =(5) and p(f,)=p(f,)=(-2,-3,2,-1,1).

2. List of values. Given are a,,---,a,cF pairwise distinct, and p=n, B=
(x—ay,-++,x—a,)and N=(1,--+,1). Then r,=f(a;) is the value of f at a, For the
example, let (a;,,---,as)=(-2,-1,0,1,2) (and assume that char F#5, so that
ged (x—2,x*+x-1)=1). Then B=(x+2,x+1,x,x—1,x-2), N=(1,1,1,1,1),
p(£i)=(36,5,-2,-3,8), and p(f;) =(-28, 6, -2, —4,=3%).

3. Taylor expansion. Here some ac F is given, and p=1, B=(x—a), N =(n)
and r=(ry, -+, r,_,) where

f= ¥ r(x—a)’ mod(x-a)"

=j<n

*

so that ro, - - -, r,_, are the first n coefficients of the Taylor expansion of f at a. (It is
assumed that f can be written with a denominator that does not vanish at a.) If
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char F =0, then

(50 @)
n=—1—=1(a).
77 i\ dx?

Note that these Taylor coefficients are well-defined for any field F, whereas the
expression on the right-hand side above does not make sense if char F=j.

The sequence of coefficients is nothing but the Taylor expansion at 0. In the
example, if we choose @a=2 and n=5 (and char F #5), then

-24 -3 4 -1 |
=(8,25,20,7,1) and A e e o Y
p(f)=( ) and p(f) ( i A 125)

4. General list of values. As a common generalization of the last two cases, we
get the general list of values of the rational function and some of its derivatives in
“Hermite format™. We have a,, - -, a, € F pairwise distinct, B=(x—a,," -+, x— a,)
and N=(n,,---, n,) with n,+- - *+n,=n. Then

p(f)=(r1(h ARty rl,m e N rp(), ==y rp,np—l)!
where
= Y rgx—a)=f mod(x—a)"
O=j<n;
is the initial segment of length n, of the Taylor expansion of f at a, In the example,
we choose p=2, a,=-1, a,=2, B=(x+1,x—2) and N=(2,3) (and again assume
char F#5). Then

-24 -3 '4
p(fi)=(5,-14;8,25,20) and p(ﬁ)=(6,"21;T,—5:2—5’)-

Remark. Note that the standard encoding of a rational function f=g/h by the
coefficients of g and h is not a representation in our sense. However, it will play a
crucial role in the conversion algorithms of the next section.

3. Conversion algorithms. We now describe two algorithms: the first one converts
a rational function that is given as the quotient of two polynomials (and these
polynomials are represented by their coefficient sequences) into its representation in
base B with precision N, and the second one performs the inverse conversion. Thus
the standard representation by coefficients plays a special role: The basic parts r; are
given by their coefficients, and our conversions from one representation to another
pass via this standard representation.

We will make use of the Extended Euclidean Scheme of two polynomials a,, a, €
F[x], where a, #0:

a,=q,a,+a,, $2a0+ ha, = a,,
Q2=qa;,t+a, siaet ha, = a,
a = qa, S141G0F 41 @ = @pyy,

where the following conditions are satisfied for2=k <1+ 1: g, Qi Sis 1 € Flx], @11 =0,
Qi1 = iy + Ayry, deg a <deg ay_y, so=1, 1,=0, 5, =0, t; =1, 5, = 5_>— Gi 15k, and
Ik = x—2— Gi—1 iy Thus the g’s are the quotients and the a’s the remainders of Euclid’s
algorithm, the s’s and t’s are the “continuants’ or “convergents”, and ged (ao, a,) is
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the unique monic scalar multiple of a, (By convention, all ged’s of polynomials in
F[x] are monic.) Also note that gcd (s, 1) =1 and deg a,_, +deg t, = deg a, for all

k=1,

ArcoriTHM STANDARD-TO-REPRESENTATION. (Standard coefficients to
base representation.)
Input: A base B=(h,, -, b,) with a precision N=(n,,---,n,) and total

precision n, and a pair (g, h) of polynomials in F[x] such that
ged (b, + + + by, h) = 1. All input polynomials are given by their coefficient
vectors.

Output: A (B, N)-representation r of f=g/h.
1. For all i, 1=i=p, do steps 2, 3, 4.
2. Compute s, t; € F[ x] such that

Slb;l'. R f;h - 1_‘
degt,<n, degh,

3. Compute r;c F[x] such that

r;=gt; mod b}%,
deg r; < n; deg b,

4. For all j, 0=j < n, compute uy, vy ry € F[x] such that

r = ugbi+ vy,

deg v; <j deg b,

ry=u;—u ;i b

(Division with remainder of r; by b{. Use uo=r, and u,, =0.)

5. Return

r=(r10: i g rl.ni—l; g rp{]v 8 L rp,n,,—k)'

ArLcoriTHM REPRESENTATION-TO-STANDARD. (Base representation to
standard coefficients.)
Input: A base B=(h,, -, b,) with a precision N=(n,,---,n,) and total

precision n, a representative re R(B, N) and d N with d < n. (This
number d serves as a bound on the degree of the denominator poly-
nomial.) Again all input polynomials are given by their coefficients.

Output: The coefficients of two polynomials g, he F[x] such that r is a weak

—

(B, N)-representation of (g, h), deg h=d, deg g <n—d, h is monic and
ged (byr - - - byr, h) =ged (g, h).

. Forall i 1=i=p, compute r,=Yo=,,, 1;b!.
. Forall i 1=i=p, compute v, ¢;€ F[x] such that

vyt -+ bt - - - byr=1mod b,
deg v, < n, deg b;,

&=vb7r - bitbli - - by,
Compute w € F[x] such that

w= Z rie; mod by - - - bpr,

deg :::FZ n; deg b; = n.
(Then for all i, w=r, mod b}".)

. Compute the length I and the entries a;, s, f;, where 2=k=1[+1, of the

Extended Euclidean Scheme of (a,, a,) =(b{" - - * bye, w).

. Determine k,1=k=1+1, such that dega,<n—d=dega, ,, the leading

coefficient A of 1, and return g=A 'a, h=A""t,.
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THeOREM 3.1. The algorithms STANDARD-TO-REPRESENTATION and REP-
RESENTATION-TO-STANDARD work correctly as described. They can be performed
on arithmetic networks of depth O(log’ n) and size n®" for inputs that have total precision
at most n and (for STANDARD-TO-REPRESENTATION) deg g +deg h<n.

Proof. We first consider algorithm STANDARD-TO-REPRESENTATION. The
depth and size bounds follow from the results in von zur Gathen [1984b].

To prove correctness, we note that for 1=i=p

Y mbl= % (“i'j_u!,j+lbi)b'|!

0=j=n; 0=j<n;

= X (“gfb?‘_uf,_;ubf“):u:‘u_umfb?":rx‘:

0=j<n

and the polynomial
rybl = uyb! —u, ;4 b = —vy+ 1,44,
has degree < (j+1) deg b, and hence deg r; < deg b, This shows that re R(B, N), and
g—hr;=g—hgt;=g(1-ht)=0mod b}

implies that r is a weak (B, N)-representation of (g, h). Thus algorithm STANDARD-
TO-REPRESENTATION works correctly.
To prove correctness of algorithm REPRESENTATION-TO-STANDARD, we

first note that v; as required in step 2 exists, since b,, - - -, b, are pairwise relatively
prime. For 1=, j=p we have

e;= §; mod b}’

(so that the ¢’s are “mutually orthogonal idempotents™ in F[x]/(b}" - - - b}r)), and
w=r;mod b}". (This is the “Lagrange version” of the Chinese remainder algorithm.)
Clearly sgbit - - - byr+ tyw = a, implies that

g=hw=h Y rb{modb}

0=j<n;

for all i. Also
ged (g, h)=ged (by' - - - bpr, h),

since ged (s, ti) = 1. (For later use, it is convenient to make t, monic.) Furthermore,
deg a,_, +deg , =n and n—d =deg a,_, imply the required degree bound deg h = d.
The depth estimate O(log” n) follows from von zur Gathen [1984b]. [

Remark 3.2. Division with remainder of two polynomials in F[x] of degree at
most n can be performed in depth O(log n) and size n°", and also the iterated product
pP=p: " pa of polynomials with deg p; = n. This was proved by Reif [1983] in the
case that F supports the Fast Fourier Transform, and by Eberly [1984] in general (for
P-uniform networks). Therefore all steps of the two conversion algorithms can be
performed in depth O(logn), except possibly step 2 of STANDARD-TO-
REPRESENTATION, and steps 2 and 4 of REPRESENTATION-TO-STANDARD.
In particular, both conversion problems (i.e. computing the output from the input, as
stated) are “log-depth reducible” to EES, the problem of computing all entries of the
Extended Euclidean Scheme of two univariate polynomials. (The reduction is P-
uniform, rather than the usually required log-space uniform.)

On the other hand, also EES is log-depth reducible to the problem of computing
the conversion from representation to standard coefficients: given a,, a, € F[x] with
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0=deg a, <deg a,= n, we can compute for all 4, 0= d < n, polynomials u,, b; such that
uga, = b, mod a,,
deg by <n—d, deg u;=d, wu, monic,

by the conversion from the ((a,), (1))-representation r=(a,;) of a; to standard
representation with degree bound d. Then we can compute v, € F[x] such that

vaay, = uya, = bd.

It follows from von zur Gathen [1984b], Lemma 2.2, that the nonzero b; of minimal
degree is a scalar multiple of a, and together with those b, for which b;+h, , we
get—up to scalar multiples—the remainders of the Extended Euclidean Scheme of
(a0, @), and vy, u, are the “convergents™. It is easy then to also compute the quotients
required for EES, and the correct scalar multipliers in depth O(log n) (see von zur
Gathen [1984b]).

Thus the two problems EES and conversion from representation to standard
coefficients are log-depth equivalent. In particular, the continued fraction decomposi-
tion (g, - -, q/) of ay/a, € F(x) can be calculated via this conversion problem.

Remark 3.3. In this paper, we only consider algebraic complexity, using the model
of arithmetic networks over an arbitrary field F. When F is Q or a finite field, it also
makes sense to ask for Boolean circuits implementing the algorithms, with inputs now
represented in some standard fashion over the alphabet {0, 1}, say. It follows from the
results in Borodin, Cook, Pippenger[1983] (see also Eberly [1984]) that both conversion
algorithms can be performed on log-space uniform families of Boolean circuits of
depth O(log” n) and size n®"). Note, however, that at the present time no (log n)°®"
depth method is known to compute modular inverses (or even the ged) of n-bit integers.
When F is Q or some Z,, then the above Boolean circuits use a “‘redundant notation”
u/ v for field elements, with u, ve Z, v>0, but not necessarily ged (u, v) =1. If F=Z,
then we can also enforce 0= u, v < p, but we do not know how to replace (u, v) by the
unique w such that w=(u/v) mod p and 0= w < p.

4. Representability. In this section, we discuss the questions of Representability
and Convertibility as mentioned in § 2. We first provide a (large) subset S§(B)< F(x)
such that every f € S(B) has a unique (B, N)-representation, and then a subset Ty, 4 =
F(x)such that on Ty, 4 algorithms STANDARD-TO-REPRESENTATION and REP-
RESENTATION-TO-STANDARD compute functions that are inverse to each other.

Fix a base B and a precision N. If f=g/h with g, he F[x], ged (g, h)=1 and
ged (by, h) # 1, then f has of course no representation in base B. Namely, if r were a
representation, then

ged (by, h)|g — hry,
and hence
ng {bla h]lgs

contradicting the assumption.

The example (bg)/(bh) of § 2 showed that the congruence condition in Definition
2.1 is too weak for unique representation. To rule out this example, we introduced the
ged condition, which corresponds to

S(B)={fe F(x):3g, he F[x]suchthat f=g/handged (b, - - b, h)=1}.

(This semilocal ring S(B) is the intersection in F(x) of all localizations F[x],,, with
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q running through the irreducible factors of b, - - - b,.) We now show that Representa-
bility holds for the elements of S(B).

THEOREM 4.1. Let B be a base, N a precision for B, g, h € F[x] with ged (g, h)=1,

and f=g/h e F(x). Then the following are equivalent:
(1) (g, h) has a unique weak (B, N )-representation,

(ii) f has a unique (B, N)-representation,

(iii) ged (b, - -+ b, h)=1,

(iv) fe S(B).

Proof. We will prove “(i)=>(iv)=>(iii)=>(i)” and “(ii) & (iii)".

For “(i)=(iv)", assume f ¢ S(B), and that (g, h) has a weak (B, N)-representation
r=(ro,***,rpn1)€R(B, N). Then gcd (b, - - b,h)#1, and we take i and an
irreducible polynomial g € F[x] such that g|gcd (b, h). Now change r to Fe R(B, N)
by replacing r,,_, with 7, _,=r,,_,+b;/q. Then

Hr i b} = hi,, %" mod b,

and 7# r is also a weak (B, N)-representation of (g, h).

For “(iv)=(iii)”, let feS(B), and write f=g/h with g he F[x] and
ged (by -+ by, h)=1. Now assume that ged(by - - b, h)#1, say that
qlged (b, - - - by, h) for some irreducible g € F[x]. Then from gh = gh we get g|gh and
hence glg, a contradiction.

For “(iii)=>(i)", we have seen in Theorem 3.1 that algorithm STANDARD-TO-
REPRESENTATION with input (B, N, g, h) computes a (B, N)-representation of f,
which is of course also a weak (B, N)-representation of (g, h). So now suppose that
(g, h) has two weak (B, N)-representations r, Fe R(B, N), and let ri=Yoss<n rybl,
and similarly 7. Then for all i, 1 =i=<p, we have

b?’|h(rf_f_':‘); ged (b, h) =1,
deg (ri— 1) <n; deg b,
which implies that
bi|r— 7,

and hence r; = 7,. It follows that r=r, and (i) is proven.

For *“(iii)=>(ii)”, we first note that, assuming (iii), any re R(B, N) is a weak
(B, N)-representation of (g, h) if and only if it is a (B, N)-representation of f. Since
(iii) implies (i), (ii) also follows.

For “(ii)=>(iii)”, we assume that f has a (unique) (B, N)-representation, and
therefore f=g/h with g he F[x] and ged (b, - - b, h)=1. Then gh=gh, and if
qlged (b, h) for some i and g€ F[x] irreducible, then qlg. (iii) is proven. 0O

Example 4.2. For the second property of algorithms REPRESENTATION-TO-
STANDARD and STANDARD-TO-REPRESENTATION computing inverse func-
tions, consider the example p=1, B=(x’-x), N=(1), d=1 and r=(x*+1) (and
assume char F # 2). The output of dlgorithm REPRESENTATION-TO-STANDARD
is (=2x, —x). If we now simplify f = —2x/—x to f = 2and apply algorithm STANDARD-
TO-REPRESENTATION with input B, N, (2, 1), the output is (2) # r. This example

makes it clear that the second property will not hold for all re R(B, N). But we will
see that it holds for “almost all” r.
Consider the following set gt

Tﬂ.n,d ={(ga h)E‘ F[x]z: ng (gs h}=ng (bl i bp) h): 1,
h is monic, deg g <n—d, deg h =d}.
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Ignoring the data B, N, d, which remain unchanged throughout the algorithms (d does
not even appear in STANDARD-TO-REPRESENTATION ), we now write a(g, h)=r
and B(r) = (g, h) for the functions computed by the two algorithms STANDARD-TO-
REPRESENTATION and REPRESENTATION-TO-STANDARD. For (g, h) € Tg 5 4,
we have f=g/he S(B), and r=a(g, h) is a (B, N)-representation of f.

TuEOREM 4.3. Let B be a base, N a precision for B with total precision n, and d < n.
Then the functions a and B are inverse bijections between the set Ty, 4= F(x) and its
image in R(B, N).

Proof. Let U = a(Ty, ) be the image of Ty, 4 in R(B, N). Itis sufficient to show
that B o a(g, h) =(g k) for any (g, h) € Tg .., since then a: Ty, 4= U is injective, and
surjective by definition. Furthermore, B is a section of @, and hence its inverse.

So let (g, h)=pBea(g h)=(A 'a, A 't), using the notation of the algorithms,
and write b= b{" - - - b;». We can assume g # 0, and then g, # 0. From

g=hr, modb
for all i, it follows that

g=hw mod b,

and there exists s € F[x] such that
sb+hw=g,
deg g+deg h<n=degb.

By the uniqueness of the Extended Euclidean Scheme (see e.g. von zur Gathen [1984b],
Lemma 2.2), there exists me {1, -, [} and ue F[x] such that

g = ua,, h=ut,,
dega,=degg<dega,_.

Since dega,=degg<n—d=dega, ,, we have k=m. But on the other hand
n—deg a,,_, = deg t,, = d implies that n —d =deg a,,_,, and therefore m = k. It follows
that m =k, and :

g=ur'g, h=ur"'h
Since ged (g, B) =1, uc F. Both h and h are monic, therefore uA '=1. O

5. Applications. We can now reap the fruits of the work spent in setting up the
previous notation. By putting together algorithms REPRESENTATION-TO-STAN-
DARD and STANDARD-TO-REPRESENTATION (using different bases) we obtain
a fast parallel algorithm for conversion from one base to another. This yields fast
parallel algorithms for a number of important problems in symbolic manipulation (and
also clarifies how these problems are related to each other).

INTERPOLATION (n) has as input a pair (a, r) where a=(a,," ', a,) and

r=(r,---,r,) have entries from F, and a; # a; for 1 =i<j=n. The output are the
coefficients of the unique fe F[x] such that deg f < n and f(a;) =r; for 1=i= n. This
function is nothing but the conversion from ((x—a,,---,x—a,), (1,-+-,1))-

representation to ((x), (n))-representation. (In order to obtain the unique monic
g € F[x] of degree n such that g(a;) = r; for all i, one uses the interpolation polynomial
f for the values r,—a}, and g=x"+f)

R
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TAYLOR EXPANSION (n) has as input acF and the -coefficients
(80, na=rs o, * + + ) Of

=ZD§E<.H d g!'-?j F
% EUEJEJ hix’ e

where ). hja’ # 0. The output are the Taylor coefficients fy, - - -, f,_, € F of f at a, so
that f=%,_ ., fi(x—a)’ mod (x—a)". This is the conversion from coefficients to
((x—a), (n))-representation.

HERMITE INTERPOLATION (n) has an input of the form (a, ry, - - -, r,), where
a=(ay,~ -, a,); =P, rin-1), all a,r;eF, and a;#a; for 1=i<j=p, and
nyt---+n,=n. The output are the coefficients of the unique polynomial fe F[x]
such that deg f< n and

=0 ) r!f:'(x —a;)’ mod (x —a;)™
0=j<ny;
for 1=i=p.
Thus the first n; coefficients of the Taylor expansion of f at a, are prescribed. If
char F =0, this is equivalent to prescribing the values of the first n; derivatives of f at

a; as
dj
(Ex%)(ar']=jlrfj-

HERMITE INTERPOLATION (n) is the conversion from ((x—ay, - - -, X—a,),
(ny, -+, np))-representation to ((x), (n))-representation. INTERPOLATION is a
special case of this problem. Again, one can also compute the unique monic inter-
polation polynomial of degree n.

CHINESE REMAINDER ALGORITHM (n) has as input a sequence
(by,**+, by ry,+++, 1,) of polynomials from F[x]suchthatdeg (b, - - b,)=n,degr, <
deg b, the b;’s are nonconstant and pairwise relatively prime. The output are the
coefficients of the unique fe F[x] such that f=r, mod b, for 1=i=p and degf<n.
This is the conversion from ((b,, -, b,), (1, -+ -, 1))-representation to ((x), (n))-
representation.

ELEMENTARY SYMMETRIC FUNCTIONS (n) has as input a sequence
(€,,-++,¢c,) with ¢ € F. Output are the elementary symmetric functions s;=
a(c, -, ¢,) for 1=j=n. Thus

" —syt" e (1) s, = () - (t—cy),
where ¢ is an indeterminate. This can be viewed as a special case of the monic version
of HERMITE INTERPOLATION: Set C ={c,," - -, c,}, p=#C, {a, - -,a,}=C,
and r; =0 for 0= j < n, where a, occurs exactly n; times among ¢, -+, ¢,. The inverse
function—root-finding—cannot be computed by a rational algorithm.

PARTIAL FRACTION DECOMPOSITION (n) has as input the coefficients of
polynomials b,, - -+, b, and g,and n,, - - -, n, € N such that b, - - -, b, are nonconstant

and pairwise relatively prime, and degq<deg (b7 - - - byr)=n. Output are the
coefficients of the unique polynomials s; (1=i=p, 1=j<n,) such that

bfi- .- b:” 1=i=p bJ,',

deg s, < deg b,
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(For a slightly more general case, one would not assume deg g> n; then one first
has to perform a division with remainder to get a polynomial summand plus a problem
of the above format.) We note that for all i

g= Y b} bbby by s;bl mod b}
11‘_?1'!;::-
We first convert the ((x),(n))-representation of g to the ((b,,---,b,),

(ny, -+ -, n,))-representation r, then for all i, 1=i=p, take r, and v; as in steps |
and 2 of REPRESENTATION-TO-STANDARD, and compute the ((b,),(n,))-
representation (s¥, * * +, 5%, _1) of viri. Then sy=s¥,_; for 1=j=n;

PADE APPROXIMATION (n) has as input a polynomial f€ F[x] of degree < n,
and d € N with 0= d < n. The output consists of the coefficients of polynomials g, he
F[x] such that g=fh mod x", degg<n-—d, deg h=d, and h is monic. Thus g/h=
fmod x" is a Padé approximant to f (provided h(0) # 0). This is the conversion from
the ((x), (n))-representation (fo,- -+, f,—1) of f=Y fix' to standard representation.
(For sequential Padé computations, see Gragg [1972], Geddes [1979], Brent, Gustav-
son, Yun [1980], and for an overview of the theory Baker, Graves-Morris [1981].)

CAUCHY INTERPOLATION (n) has as input d € N with 0=d < n and a pair
(a,r) where a=(a,,* -, a,), r=(r,--,r,)eF" and a,#a; for 1=i<j=n. The
output consists of the coefficients of polynomials g, h € F[x] such that g(a;) = h(a;)r;
forl=i=n,deg g<n—d,deg h=d, and h is monic. Thus f= g/ h is a rational function
with prescribed denominator degree that interpolates the given values r; at a, i.e.
f(a;) =r; (provided h(a;) #0). Cauchy [1821] had considered this problem and given
an explicit solution by a closed formula similar to the Lagrange interpolation formula.
For a modern treatment, see Gustavson, Yun [1979] and Knuth [1981, Exercise 4.7-13].
Algorithm REPRESENTATION-TO-STANDARD withbase B=(x—a,, - -,x—a,),

precision N =(1,--+,1), and degree bound d computes a solution.
RATIONAL HERMITE INTERPOLATION (n) has an input of the form
(ds a,r, -, rp} Where OEdC n, a =(als iy ap}! r =(ri|]5 Rl ri',nl---])ﬁ a" ay, r!je F:

a;#a; for 1=i<j=p, and n,+- - -+n,=n. The output are the coefficients of poly-
nomials g, h € F[x] such that
g=h- ¥ ry(x—a) mod(x—a)",
O=j<<n
degg<n—d, degh=d, and h is monic. Thus the initial segments of the Taylor
expansion of the rational function f=g/h at a; are prescribed, i.e.
f= Y rfx—a)’ mod(x—a)"
O=j<mn;

(provided h(a;)#0). This problem simultaneously generalizes HERMITE INTER-
POLATION (which has d =0), PADE APPROXIMATION (which has p=1 and

a,=0), and CAUCHY INTERPOLATION (which has n,=---=n,=1). It can be
computed by algorithm REPRESENTATION-TO-STANDARD with input B=
(x_alv".!x_ap)vN:(nl"-"'ﬂ‘p)and r:(rl;.";rp)‘

The following theorem tells us that all the above problems have a fast parallel
solution.

THEOREM 5.1. The following nine functions can be computed in depth O(log® n)
and size n°": INTERPOLATION, TAYLOR EXPANSION, HERMITE INTERPO-
LATION, CHINESE REMAINDER ALGORITHM, ELEMENTARY SYMMETRIC
FUNCTIONS, PARTIAL FRACTION DECOMPOSITION, PADE APPROXIMA-
TION, CAUCHY INTERPOLATION, RATIONAL HERMITE INTERPOLATION.
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Proof. Use Theorem 3.1 and the fact that all these problems can be solved by
algorithms STANDARD-TO-REPRESENTATION and REPRESENTATION-TO-
STANDARD. 0O

Remark 5.2. Not unexpectedly, the above general result is not the best possible,
at least in some cases dealing with polynomial problems. For a polynomial f, TAYLOR
EXPANSION can be computed by calculating binomial coefficients and evaluating
universal Taylor coefficients of f (see von zur Gathen [1984b, § 6]). This can be
performed in depth O(log n), so that the corresponding statement of Theorem 5.1 is
interesting only in the case of rational functions. Reif [1983] provides less obvious
methods for interpolation and elementary symmetric functions that use only depth
O(log n) and polynomial size. These methods assume that certain roots of unity are
available in the ground field; they have been extended by Eberly [1984] to hold over
arbitrary fields.

Remark 5.3. Clearly all our computational problems can be expressed by systems
of linear equations, and these are always solvable in depth O(log” n) (Csanky [1976],
Borodin, von zur Gathen, Hopcroft [1982], Berkowitz [ 1984]). However, for singular
systems over arbitrary fields only a probabilistic algorithm is known. The above results
amount to saying that in the cases considered here it is sufficient to solve nonsingular
systems of linear equations; again this is well-known in some cases, such as interpolation
by polynomials (Vandermonde matrix).

Remark 5.4. Itis well-known that in some cases the rational interpolation problem
does not have a solution. Theorem 4.3 shows that most r€ R(B, N) are representations
of a rational function f=g/h with degg<n—d and degh=d (g and h are poly-
nomials). However, in Example 4.2 we have seen that not all re R(B, N) are such
representations. For a general discussion of this phenomenon, let B=(b,, - -, b,) be
a base, N a precision for B, n the total precision, 0=d <n, and re R(B, N). Set
a,=b7r: - by and let a,€ F[x] be a polynomial such that dega;<<n and r is a
(B, N)-representation of a,. By the Chinese Remainder Theorem (or by Theorem 4.1),
a, exists and is unique. Furthermore, let a,, s, #, € F[x] be the (unique) entries of the
Extended Euclidean Scheme for (a,, a,) with deg a, <n —d =deg a,_,. We then have

Spag+ ha, = ag,
ha, = a, mod ag.

Now assume that ged (ay, 1) = 1. Then r is indeed the (B, N)-representation of f=
a./ ty, and ged (ay, t,) = 1. The latter property follows using the fact that ged (s, #) = 1.
Thus “ged (a,, 1) = 1" is a sufficient condition which guarantees that r is the representa-
tion of a rational function. Note that it is always satisfied if d =0, and then k=1,
a.=a;, 4, =1.

This sufficient condition holds “almost everywhere” in the following sense. For
fixednumbers d, p,n, - -+, n,, my, -+ -, m, the set of inputs (b,, - - -, b,, r) for algorithm
REPRESENTATION-TO-STANDARD with deg b; = m; can be considered as a subset
of F", where

m=p+ 3 (n+1)m,
1=i=sp
It is a Zariski-open dense subset, the only condition being that deg b;=m,; and
ged (b, b)) = 1for 1 =i < j = p; the latter condition can be expressed by the nonvanishing
of a resultant polynomial. Now there exists a nonzero polynomial P in m variables
such that
P(by, -, b, r)#0=gcd (a,, t;) =1,
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using the above notation. Thus the sufficient condition holds “almost everywhere” in
the strong sense of algebraic geometry, namely on a Zariski-open dense subset of the
input set (assuming that F is infinite). (P can be chosen so that P(b,, - -, b, r)#0
will imply that the Euclidean Scheme for (a,, a,) is normal, i.e. that deg g, = 1 for all
k. But in fact, a polynomial P as above exists for every subset of the input space
corresponding to some D(d,, - - -, di.,), using the notation from Strassen [ 1983, (5.3)],
and such that P does not vanish identically on the subset.)

Example 5.5. Let us now look at a “‘bad case” for Padé approximation. Let n =5
and r=x" '—x""+1. Then g = h = x” is the only solution of the conditions

g he F[x], g=hr modx",
degg<n-2, deg h=2, h monic.

In particular, there does not exist a Padé approximant f=g/he F(x) satisfying the
above conditions and ged (g, h)=1. Algorithm REPRESENTATION-TO-STAN-
DARD with input ((x), (n)), d =2, r will output (g, k) = (x? x?). Similarly, Example
4.2 shows that there is no f=g/hc F(x) such that f(1)=2, f(0)=1, f(-1)=2, and
g he F[x], deg g,deg h=1 and ged (g, h) = 1. Algorithm REPRESENTATION-TO-
STANDARD will compute (g, h) =(—2x, —x) which satisfies the conditions

g(1)=2h(1), g(0)=h(0), g(-1)=2h(-1).

This is a “fake solution” which does not yield an interpolating rational function,
while “almost all” other such interpolation problems do have a solution. This
phenomenon of nonexistence of solutions to the Padé approximation problem and for
rational interpolation was discovered by Kronecker, who illustrated it with an example.
In Padé’s work [1892], this fundamental limitation does not appear. For further
examples, see e.g. Graves-Morris [1980].

Historical remark 5.6. The general idea in this paper is to reduce an algebraic
problem to systems of linear equations; for the latter we have fast parallel algorithms.
This idea is in fact quite old. Jacobi [1846] reduces the rational interpolation problem
(for the general Hermite format) to systems of linear equations, and also explicitly
describes the solutions in terms of determinants of the inputs; he has several such
descriptions. In particular, Jacobi secems to have been the first to assert the existence
of what is now called Padé approximations. Jacobi also realized the close connection
between the interpolation problem and general banded systems of linear equations in
the Hankel format,

Cauchy [1821] had previously stated an explicit solution to the rational interpola-
tion problem by a closed formula.

Kronecker [1881] has two methods for solving the general interpolation problem,
one via continued fractions (i.e. essentially the Euclidean Scheme) and one via systems
of linear equations. Both Jacobi and Kronecker are motivated by the elimination
problem in algebraic geometry.

In hindsight, it is almost surprising how long it took to rediscover these methods
and cast them into modern algorithms for algebraic manipulation: the subresultant
algorithms of Collins [1967] and Brown [1971] for ged’s and the Padé computations
of Geddes [1979] and Brent, Gustavson, Yun [1980]. The essential ingredients of these
algorithms (and of those presented here) are already contained in the classical papers.

6. Laurent representations. The representations defined in § 2 were sufficient to
describe a unified fast parallel solution to the problems in § 5. Limitations of these
representations have been pointed out: not all rational functions have representations,

e —
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and representations may not be unique. In this section, we generalize the notion of
representation slightly in order to deal more successfully with these issues.

Two generalizations suggest themselves: one can either allow quotients of poly-
nomials in a representation (which would include the standard representation of a
rational function as a quotient of two polynomials), or one can allow representations
in a “Laurent format”. We pursue the latter approach.

DEFINITION 6.1. Let B=(b,, - -, b,) € F[x]” be a base, consisting of nonconstant
pairwise relatively prime polynomials, and N =(n,, - - -, n,) €N’ a precision for B,
with total precision n =Y ,-,-, n; deg b. A Laurent (B, N)-representative is a vector

r__{mls SRR AT WL R (PR R Toos " * " s rp.lr:,,—l);
where
meZ, r;eF[x], degr;<degb,

for all i,j (1=i=p,0=j<n,). We write r,=Y o=, rbl. Now let g, he F[x] with
h#0. We say that r is a weak Laurent (B, N)-representation of (g, h) if for all i, b
divides g (if m;=0), and

gb;™=hr, mod b!".

We now present two fast parallel algorithms that perform the conversion between
the standard and a Laurent representation of a rational function. Later we will
strengthen the conditions on Laurent representations, and obtain a notion with the
two crucial properties of Representability and Convertibility. However, for the descrip-
tion of the algorithm it is convenient to work with the weaker notion first.

ALGoriTHM STANDARD-TO-LAURENT. (Standard to Laurent representation.)

Input: A base B=(b,, -, b,), a precision N=(n,,---,n,) for B, and two
polynomials g, he F[x]. All input polynomials are given by their
coefficient vectors.

Output: A weak Laurent (B, N)-representation r of (g, h).

1. If g=0, return r=(0,---,0; 0,---,0) and terminate. Else compute a=
ged (g, h), the leading coefficient A of h, and replace (g, h) by (g/Aa, h/Aa).
(By convention, the ged is monic.)

2. Forall i, 1=i=p, do steps 3, 4, and 5.

3. Compute m; € Z as follows. If ged (b, h) =1, then

m; = max {j € N: bj|g}.
Else

ged (b, b;™) =ged (b, by™*") #ged (b, by™ ™).
(Note that this condition determines m, <0 uniquely.)

4. Compute

X ] b ™ h
¢;=ged (b, h), g.-=gc—', h=—c F[x].

(Then ¢; =1 if ged (b, h) =1, and ged (g, h;) = ged (b, b)) =1.)

5. Call algorithm STANDARD-TO-REPRESENTATION with input ((b,), (n;),
(8 hi)) to return (ri, -~ =, Fipn1)-

6. Return

r= (mh M iyttt s P i s Tt rp.np—]}-
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ALGorITHM LAURENT-TO-STANDARD. (Laurent representation to standard.)
Input: A base B=(by,---,b,) and a precision N=(n,,*+-,n,) for B, with
total precision n, d €N, d <n, and a Laurent (B, N)-representative

rz(mh‘ Yis omp; Fioy =0 9rl,n|-l; i rpt]! Fa !rp.ﬂ,—l.)'

Output: Polynomials g, h€ F[x] such that h is monic, and r is a weak Laurent
(B, N)-representation of (g, h).
1. For all i,1=i=p, set ¢, =max {0, —m,}, and compute 1, u, 5, 1, u; € F[x] such
that

z:blml-'—rl. . aw b;’p*—ep, u= bfl .. b;p,

¢ t L u

;o b:ﬂ"l-f'! = b.l_g[’

st=u;, Y rblmodb,
O=j<n;

deg s, << n; deg b,

2. For all i,1=i=p, compute the ((b;), (n;))-representation s{= (80, *, Sin 1)
of s, as in step 4 of algorithm STANDARD-TO-REPRESENTATION. (Then
8i=Yoz;<n S;b! and deg s, <deg b,.)

3. Call algorithm REPRESENTATION-TO-STANDARD  with input
(B, N, (51, +,s5),d) to compute g', h'e F[x] such that for all i

g'=h's,mod b,
degg'<n—d, degh'=d, h'monic.
4. Let p be the leading coefficient of u, and return
g=un'g's,
h=u""'h'u
THEOREM 6.2. The algorithms STANDARD-TO-LAURENT and LAURENT-TO-
STANDARD can be performed in depth O(log® n) and size n®" on inputs that have
total precision at most n and (for STANDARD-TO-LAURENT) deg g +deg h<n.

They work correctly as described in “ Output™. In fact, the following relations hold, using

the notation of the algorithms, and r, =} y<;.-,, 1;bi:

(i) In STANDARD-TO-LAURENT, if ged (g, h) =1, then for 1=i = p,

¢, =ged (bI™ k), ged (; b,) =1, gb ™eF[x],

gb;™i= hr; mod bjic,.
(ii)) In LAURENT-TO-STANDARD, for 1=i=<p, gh;™ € F[x], and
degg<n—d+ Y m,degh,

1sisp
O==my

degh=d+ Y |m)|degh,
1=i=p
m; =0

gb;™ = hr,mod b},
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Proof. The bounds on the depth and size are clear. For the correctness proof for
STANDARD-TO-LAURENT, we can assume g # 0 and gcd (g, h) = 1. Obviously b[™|g
if m;> 0. Suppose g € F[x] is irreducible and divides ged (b, h), say

q*|bi g*'1by q'|h, g' ' 1A,
with k, € Nand k, I>> 0. Then (—m;)k =l and q'|b, ™, hence q'|c, and g+ h/ ¢, Therefore
gcd (bis hi) =ng {bl', h/cl) e 1! and

b;™ h
B g=hri=—r, mod b},
C; C;

using Theorem 3.1. Thus
gh, ™= hr, mod bl:c,

and r is a weak Laurent (B, N)-representation of (g, h).
For LAURENT-TO-STANDARD, clearly h is monic, and we have

degg=degg'+ Y (mi+e)degb<n—d+ Y m;degh,

1=i=p Isi=p
0<m;
degh=degh't Y edegh=d+ ¥ (/m]degbh,).
1=i=p 1=i=p
m; =

If m;> 0, then ¢, =0, and therefore b™|t and gb; ™ ¢ F[x]. With r, =Y osj<n, ryb{" we
have in any case

pughy™ =ug'th; ™ = ug'thi = uh's;tbf
= wh'ur;bi = uh'uyr; = whur; mod b,
Since wpu; is a unit mod b4, it follows that
gh, ™= hr, mod b"%, 0

It is clear that Definition 6.1 of “weak Laurent representation” really is too weak.
Under this notion, one function may have many representations. If B=(x), N =(2),
g=1, h=x so that g/h=1/x=x '(14+0- x), then we would like to have (—1; 1, 0)
as (B, N)-representation of (g, h), but in fact (—1; 1, a) is a weak Laurent (B, N)-
representation of (g, h), for every a€ F. Not even the m;’s are uniquely determined:
any r=(m; a, b) with m=-2 and a, be F is a weak Laurent ((x), (2))-representation
of (1, x*). Even the somewhat stronger congruence in Theorem 6.2(i) does not com-
pletely determine the exponent m;. As an example, take p=1, B=(b,), N=(2), g=b,g,,
h=1 with deg g, <deg b,. Then ¢, =1, and both (0;0, g,) and (1; g,,0) are weak
Laurent (B, N)-representations of (g, h). Thus some more stringent conditions are
necessary to ensure uniqueness of representations.

DEFINITION 6.3. Let B be a base, N a precision, r a Laurent ( B, N)-representative
as in Definition 6.1, and g, he F[x] with h #0. We say that r is the Laurent (B, N)-
representation of f= g/ h if the following conditions are satisfied:

(L) ged (g, h)=1.

(Ly) For all i 1=i=p, set ¢=ged(b™, h). Then gh,™eF[x], and

ged (b, h/¢) =1.

(L;) rig#0.

(L,) Forall y1=si=p,

gb; ™= hr, mod bc,
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Clearly this relation between f and r does not depend on the choice of g, h, since (L)
determines them up to a scalar factor.

Lemma 6.4. Let B, N, r, g, h as in Definition 6.3 satisfy (L,), (L,), (L,). Then (L;)
holds if and only if the following condition helds:

(L3) For all i,1=i=p, either (gcd (b, h)#1 and m;<<0 and ged (b;™, h)=
ged (b;™™ ) # ged (b;™ ', h)) or (ged (b, h) =1 and m;=0 and b}|g and b1 g).

Proof. Note that r,,# 0 if and only if b, does not divide 7,

“(Ly)=>(L%)": Fix some i, 1=i=p. If ged (b, h)=1, then ¢;=1 and m, =0, since
otherwise b;|gh;™ and r,=0. (L}) follows in this case. If gcd (b, h) # 1, then b,+g
and m; =0 by (L,). Define I <0 by ged (b; ', h)=ged (b, """, h) # ged (b7, h)). Then
(L,) implies that

¢i=ged (b{", h) =ged (b, h)

and m; =1 If m, </, then b,|b;™/¢, and (L,) implies that b;|(h/¢;)r, hence b;|r. Thus
m; = I, and (L}) follows.

“(L3)=>(L,)": Fix some i,1<i=<p. If m;=0, then ged (b, h)=1 and b,4+gh, ™,
hence b;+r,.

If m; <0, there exists an irreducible polynomial g € F[x] with multiplicity >0
in ¢;=ged (b;™, h) such that g'+b;™'. Choose some such g and [, and let k be the
multiplicity of g in b. Then (—m,;—1) - k<[, and the multiplicity of q in b, "/¢, is
(—=m,) - k—1< k. Since also g+g, we have ¢“+gh;™/c; and therefore b;+(h/c)r. [

Note that in Definition 6.3, m; and ¢; do not depend on N, and as in & 2, the
Laurent (B, M)-representation for M =N is obtained by truncating the Laurent
(B, N)-representation.

In order to compare Definitions 2.1 and 6.3, let B, N be as usual, g, h € F[x] with
ged (g h)=1,f=g/le F(x), r=(my, **, M, F10,° Sty p 13 % * §ilpes* "5 Hnimn) @
Laurent (B, N)-representative. We assume b}"|g if m, =0, and define ¢; = ged (bi™ h)
asin (L,). Let b=b{1- - by, c=c¢, " - - c,, and u € F[x] such that

Vi ul] b;™'=1 modbc, degu<degbc

j#i

For simplicity, we assume ged (u, h)=1. Set g=(gu/c) gz, D1 h=h/ce F[x],
F=gIhe F(x); and 'F&(ro) <, nlal v 5 n el Rl SVER(BIN). «Then
ged (g, h) =1, and we have:
1. ris a weak Laurent (B, N)-representation of (g, h) and (L,) holds
&F is a weak (B, N)-representation of (g, h),
2. ris the Laurent (B, N)-representation of f
&7 is a (B, N)-representation of f and (L}) holds.
THEOREM 6.5. Let B be a base, N a precision for B, and fe F(x). Then:
(i) f has a unique Laurent ( B, N)-representation.
(i) Giveng, he F[x] wiihf=g/hand ged (g, h) =1, algorithm STANDARD-TO-
LAURENT computes the Laurent (B, N )-representation of f.
Proof. (i) Foran arbitrary fe F(x), write f = g/h with g, h€ F[x]and ged (g, h) =
1. Let r be the weak Laurent (B, N)-representation of (g, h) computed by algorithm
STANDARD-TO-LAURENT with input B, N, g, h. Theorem 6.2(i) guarantees that
(L), (Lo), (L3), (Ly) hold, hence r is the Laurent (B, N)-representation of £ This also
proves claim (ii).
For the uniqueness, let r'" and r'® be two Laurent (B, N)-representations of
f=g/h. Fix some i, 1=i=p. First note that the value of m; is determined by the
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condition (L3). As usual, we write r{’ =Y,_,_, ri'b/ for k=1,2. Then

hrV=gb;™=hr® mod b}

by (L,), and hence
h

h
—riV=—r? mod b},
G G

r'V=r? mod b™,

since h/c, € F[x] is a unit mod b} (using (L,)). Since deg r{*’ < deg b, it follows that
riV =2 hence r'V=r?, O

Next we want to prove that the functions computed by the two conversion
algorithms are inverses of each other. It turns out that, unlike in Theorem 4.3, we have
to impose a condition on the base to guarantee this.

THEOREM 6.6. Let B=(by,- -+, b,) be a base. The functions computed by algorithms
STANDARD-TO-LAURENT and LAURENT-TO-STANDARD are inverses of each
other if and only if each b; is irreducible.

Proof. To be more precise, we claim the following for any base B. Let N be a
precision for B with total precision n, 0=d <n, Ry<Z”x F" the set of Laurent
(B, N)-representatives. By Theorem 6.5, we have a mapping py: F(x) > Ry, which
associates to each fe F(x) the unique Laurent (B, N)-representation py(f)e Ry of
f Let

Tong = {(g, h)e F[x]’: ged (g, h) =1, h # 0 is monic,

g
pN(E) :(ml! WS LT mp; Irl(}s' T BT rl.nl—l; et er! TR rp.np—-l)e RN!

degg<n—d+ Y m;degb,degh=d+ Y |m]deg bi}.
0<m, m; <0
The bounds on the degrees of g and h are the same as those for the output of
LAURENT-TO-STANDARD. From Theorem 6.5 it is clear that STANDARD-TO-
LAURENT maps (g, h)€ Ty na to pn(g/h) e Ry. Let

Upna = PN({ﬁ (g, h)e Tyna f=%}) < Ry.

For (g, h) € Ty n 4, we can execute algorithm STANDARD-TO-LAURENT with input
(B, N, g, h) to get output r=pn(g/h) € Up nq On the other hand, for re Up v a4 we
can execute algorithm LAURENT-TO-STANDARD with input (B, N, d, r) to get
output (g, h). The claim of the theorem is that the two conversion algorithms give
inverse bijections between Ty n4 and Up vy for all N and d if and only if each b, is
irreducible. .

For the implication =", we can assume that b, = ovw with v, we F[x] non-
constant. Choose N =(2,0,---,0) and d =1+deg v. With input g=1, h=uv, STAN-
DARD-TO-LAURENT will produce r=(-1,0,---,0; w,0), and LAURENT-TO-
STANDARD will yield (w, b)) # (1, v).

For the implication ““<=", it is sufficient to show that for any B, N, d, (g, h) € Ta n.a,
and r=py(g/h), algorithm LAURENT-TO-STANDARD with input (B, N, d, r)
computes (g, h). We use the notation of the algorithm, and set

g=ngt™', h=phu™".
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Our goal is to show that g h are equal to g', h' as computed in step 3 of
LAURENT-TO-STANDARD. First note that g he F[x]: If m;=0, then ¢,;=0 and
b"|g by condition (L,). If m; <0, then m;+e; =0 and ged (b;™, h) # ged (b; ™, h).
Since b; is irreducible, it follows that ged (by™, h)=b;™, and b{|h. Therefore u|h,
and thus g, he F[x]. Now for any i, 1=i=p, we have ¢;=b{*=gcd (b\™!, h), and

gb;™=hr,mod b}""%,
uth§ g = uugh; ™ = puhr,= phst, = hus;t, = u;t,h%hs, mod b"* .
Since u; and t; are units mod b, it follows that
(1) g= hs, mod b7
As to the degrees, we have

degg=degg+ Y (—m;—e)degh,

1=isp

<n—d+ } m,degh,+ ¥ (—m;degh;)=n—d,

O=m; O<m

degh=degh+ Y (—e degb)

1=i=p

=d+ Zo (Im;| deg b;) + 2:0 (—|m,| deg b)) =4,

since (g, h) € Tg na Now these degree inequalities and (1) also hold for g’, h' as
computed in LAURENT-TO-STANDARD. These were obtained as scalar multiples
of certain entries a,, t, of the Extended Euclidean Scheme of (b]1 - - - by, w), with h'
being monic, and w=s; mod b} for all i Just as for Theorem 4.3, we now use the
uniqueness property of the Extended Euclidean Scheme to get me{1,---,I} and
ve F[x] such that g = va,, h= vt,. Again the inequalities for the degrees force m = k,
and ged (g, h) =1 implies g = g', h = h'. Therefore the polynomials x'g't and u™'h'u
computed by LAURENT-TO-STANDARD equal g and h. O

Remark 6.7. The “counterexample” b, = uv, g=1, h = u, where (v, b,) # (g, h) is
returned by LAURENT-TO-STANDARD, is of course not very convincing, since
v/ b, = g/h. The obvious remedy—returning (g/a, h/a) in step 4 of LAURENT-TO-
STANDARD, with a = gecd (g, h)—does not work as expected. It may happen that
a'=ged (g, h')#1, and that

5;&—,5,- mod b}",
a’ a

see §§ 4 and 5 for examples.

Remark 6.8. Do we gain greater generality by dropping the requirement that the
base polynomials b,, - - -, b, be relatively prime? The answer is no, not really. For
simplicity, we consider in the following b;" as one of the base polynomials (rather
than b;), and thus assume that all exponents n, are 1. Suppose that ¢ =ged (b,, b,) # 1.
Then clearly for a representation r=(r; r,; - - +) of fe F(x), r, and r, have to agree
mod c. Continuing this process of replacing (b, b;) by (b;/ ¢, b,/ ¢, ¢) if ¢ = ged (b, b;) # 1,
one arrives at a pairwise relatively prime basis ¢, * * -, ¢,. (Termination is guaranteed
by the fact that the sum of the degrees decreases with each such step.) Each ¢ is in
the “ged-closure” of b,, - - -, b, (as defined by this process), and there exist exponents
ex =0 such that b, =[], ==, ci* forall i. If @y, - - -, a, are the distinct monic irreducible
polynomials dividing b, - - - b,, and d, is the smallest positive multiplicity of g, in
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b,, -+, b, then each ¢, is the product of some a?. In fact,if S< {1, -+, s} is nonempty
and such that

VimeS Yi=p (af|b, = aln|b,)

and maximal with this property, then [],.s a{" is one of the ¢,’s. Conversely, every ¢,
is of this form.

For i,j=p, k=g, let u; =min {e, e;}. Then for any r,, - - -, r, € F[x] we have
AfeFlx] Vi=p f=rmodb&Vijk r=rmod cynr.

(For ““<", simply interpolate r, mod civk, 1=k =g, with ¢, , =max {e;: 1=j=p}.)

It is, however, not clear how to calculate ¢,, + - -, ¢, fastin parallel from by, - - -, b,
With a “logarithmic” look at exponents of the a,’s, this problem is related to the
following: Given fi=(f, - -, f;)€ N* for 1=i= p, use addition and the coordinate-
wise minimum of vectors in N’ to compute an “‘orthogonal” basis g,, - - -, g, €N’ such
that

Vi j: = gkN9
q

1=k=
Vk#m min (g, gnm)=(0,,0),
Yk g.emin-closure of f,,- - -, f,.

(Of course the algorithm would not know the coordinates of the input vectors f;.)

Remark 6.9. The concepts presented in this paper obviously apply to more general
rings than F[x], e.g. a Euclidean valuation ring R, where one has a valuation w and
a division-with-remainder property with respect to w (see von zur Gathen [1984a,
§ 4]). The two prominent examples are our case R = F[x] with w(f) =2%%/ and R=7Z
with w(a)=|a|. The “interpolation problem™ can be phrased as a “simultaneous
approximation problem”: finding g, he R such that g= hr, mod b}" corresponds to
simultaneously approximating each r; in the b;-adic valuation with precision n, (if
each b, is irreducible); the degree condition for polynomials translates into upper
bounds for w(g) and w(h). For the general problem, we would be given further
valuations v,,* -+, v, on R, precisions 8,, 8,, ;,* -, geR, and r, - -+, r,eR, and
want to compute g, h € R such that

v(g—hr)=¢g,
w(g)=38, w(h) = 6,.

This question of simultaneous approximation with respect to various valuations sub-
sumes among others the usual Chinese remainder computations, solution of congruen-
ces by rational numbers (Miola [1982]), and Padé approximation of power series. If
we consider for v, the absolute value on R =Z instead of a bi-adic valuation (and
allow r; € R), then it also subsumes approximation of a real number by rational numbers.

As of now, no (log n)?‘" parallel computation for integer Chinese remaindering
or the gcd of two n-bit integers is known. But even for sequential algorithms, it would
be interesting to have a general approximation algorithm that solves all the above
problems.
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