JOACHIM VON ZUR GATHEN (1987). Computing powers in parallel. STAM Journal on Computing 16, 930-945. URL http://dx.doi.org/10.1137/0216060.

Extended abstract in Proceedings of the 25th Annual IEEE Symp

This document s provided as a means to ensure timely dissemination of scholarly  are maintained by the authors or

SIAM 1. ComMPuT @ 1987 Society for Industrial and Applied Mathematics
Vol. 16, No. 5, October 1987 009

COMPUTING POWERS IN PARALLEL*

JOACHIM VON ZUR GATHEN?"

Abstract. Fast parallel computations are presented for large powers modulo an element that has only
small prime factors. They work for integers and polynomials over small finite fields.

Key words. parallel processing, circuit depth, algebraic computing, symbaolic manipulation, powers of
sintegers, powers of polynomials

AMS(MOS) subject classifications. Primary 68C20; secondary 10A30, 12C05

1. Introduction. Consider the problem of computing a” mod m in parallel, where

a, b, m are n-bit integers. This problem and related tasks come up as a subroutine in
many computational problems, e.g., factoring integers, primality tests, cryptographic
protocols, and factoring polynomials over finite fields. The method of “repeated
squaring” does not yield fast parallel computations, i.e., of parallel time (log n)°‘".

We present Boolean circuits for this problem. Provided that the modulus m has

only small prime factors p = n (“m is n-smooth™), the depth is O(log® n loglog n) with
p olynomial size for log-space uniform families, and the depth is of the optimal order
-O(log n) for P-uniform families.

In § 2, we use the analogue of Boolean circuits for parallel computations over
#fields, called arithmetic circuits. We determine exactly the parallel complexity of the
powenng problem over infinite fields in this model. In particular, no arithmetic circuits

of poly-logarithmic depth exist for this problem. We also present the basic technique
used for the fast parallel algorithms of the next sections; of course, it works only in
a special case.

Section 3 deals with the case of computing a” mod m, where m is a power of a
small prime number; this is the core of the algorithm. Section 4 starts with some
auxiliary parallel algorithms, for factoring numbers and Chinese remaindering, and
then describes the powering algorithm. The fact that factoring can (trivially) be achieved
fast in parallel puts the constraint of smoothness into perspective: it is a severe
restriction, and for many applications the more interesting case is that of large prime
factors. However, the present result is the first one that provides an exponential parallel
speed-up of the sequential methods for modular integer powering. In particular, it
sdisproves a conjecture in the first version of Reif [17]. A slightly different problem—
co
in

understood Lhm all pexsons copy each copyright holder, and in pﬂmculm use them only for noncommercial pur- mission of the copyright holder. (Last update 2016/05/18-14:18.)

m on Foundations of Computer Science, Singer Island FL (1984).

mputing in parallel an approximation to the high-order bits of a large power of an
teger—is considered in Alt [1].

In §§ 5 and 6 we translate the approach into the setting of polynomials over finite
¢ fields. Under the corresponding constraint that m have only small irreducible factors,
we get shallow Boolean circuits of polynomial size for the powering problem. The

depth is O(log” n loglog n) under log-space uniformity, and O(log n) under P-unifor-
mity.

Subsequent to the present paper, Fich and Tompa [6] obtained a fast parallel
: powering algorithm in large finite fields of small characteristic. This leads to the

and technial work n & non-comimercal bass. Copyright and al ights therein _ these worksare ostd here clecl

* Received by the editors January 4, 1985; accepted for publication (in revised form) December 15,
1986. A preliminary version of this work appeared in the Proceedings of the 25th Annual IEEE Symposium
on the Foundations of Computer Science, Singer Island, Florida, 1984. Part of this work was done while
the author was visiting Universitit Ziirich, Ziirich, Switzerland. This work was supported by Schweizerischer
Nationalfonds grant 2175-0.83, and by Natural Sciences and Engineering Research Council of Canada grant
3-650-126-40.

} Department of Computer Science, University of Toronto, Toronto, Ontario M58 1A4, Canada.

930



COMPUTING POWERS IN PARALLEL 931

surprising observation that for certain polynomial computations, Boolean circuits are
exponentially more powerful than arithmetic circuits (von zur Gathen and Seroussi
[10]). The problem of computing large powers discriminates between the two models,
also other natural problems like testing for quadratic residuosity.

2. Powers over fields. In this section, we consider the standard model for parallel
computations over fields: arithmetic circuits. It is easy to determine the parallel
complexity (=depth) of the powering problem exactly over infinite fields, and almost
exactly over finite fields (Theorem 2.5). In particular, in this model no computation
of depth (log n) " for powers with an n-bit exponent is possible, except (trivially)
when the field is very small, say has at most n elements. The reader interested only in
the algorithms of §§ 3 through 6 may skip this section.

It is always interesting to have problems whose computational complexity we can
determine exactly. The main motivation here is, however, to provide some justification
for the assumption that we make later, namely that the ground field be very small.

Let F be an arbitrary field. The model of computation in this section are Strassen’s
[19] arithmetic circuits (or “straight-line programs™). We only need to consider special
arithmetic circuits, with one input variable and one specially designated output node.
(See von zur Gathen [9] for general parallel arithmetic computations.) Such an
arithmetic circuit @ over F U {x} takes as inputs x and constants from F, performs
arithmetic operations +, -, ™, and /, and produces an output. At each node of the
computation graph a rational function from F(x) is computed. i, € F(x) is the rational
function computed at the output node. On substituting some a € F for x, field elements
are computed. We stipulate that in @ no division by the rational function zero occurs.
However, for certain substitutions a € F, a division by the field element zero may occur.

R, ={ae F: no division by zero occurs for x « a}

is the domain of definition of . F\R, is finite. If A< F and f: A F is a total function,
then @ computes f if and only if ¢, (a)=f(a) for all ac AN R,. If A is infinite and
« computes f, then =1, | A is a rational function. (We ignore issues of “uniformity”
for arithmetic circuits, i.e., how the individual circuits a, of a family (a,),.n can be
computed, given n.)

As usual, the size (=sequential time) S(«) of « is the total number of arithmetic
operations in a, and the depth (=parallel time) D(«) is the length of a longest chain
of subsequent operations. For a function f: A~ F, where A< F, the depth d(f) is the
smallest depth of arithmetic circuits @ over FU {x} which compute £, (If there is no
a computing f, then d(f)=c0.) We also denote by d”(f) the smallest depth of
arithmetic circuits @ over FU{x} which compute [ everywhere, i.e., with A< R,.
Clearly d=d ', and if A is infinite, then d =d'. For Ac F and beN, let

w%:A>F, a—a®

be the powering function. When F is finite and A< F “large”, then a computation
for 7% is an “approximate” computation for 7%. For a finite field F = GF(p"), with
p prime, the functions 7} are important for extracting pth roots in F [10] and squarefree
decomposition in F[x] [7]. Well-known algorithms give the following upper bounds
on the depth. (Throughout the paper “log” means log,.)

FAacT 2.1. Let F be a field, A< F finite with s elements, b, ¢, ke N, b= ¢ mod kb=
l,1=c<kandf: A~ F any function. Then

(i) d'(f)=log s+ (2log s)"/*+3,
(i) F algebraically closed = d'(f)= [log s|+2,
(iii) d™(w})=[logh],



932 JOACHIM VON ZUR GATHEN

(iv) Ac{aeF:a*"'=a}=>d*(=h) = [log c],

(v) Ac{acF:a*=1}=>d" (%) =[log (k—c)]+]1.

Proof. (i) and (ii) follow from Munro and Paterson [ 16], applied to the polynomial
in F[x] interpolating f over A. The method of “repeated squaring™ (see [13, § 4.6.3])
proves (iii). In (iv), we have 74 =74, and in (v), #4=1/75°. O

An upper bound d(f)=[logs]+2 holds in (i) for any field, with a rather
unproductive circuit @ computing [[,.4 (x—a)™', so that ANR, =@. If we allow
additions for free, then Kung [14] has a surprising algorithm that uses depth 2.

To put the subsequent results into perspective, we next note some lower bounds
ond(m})and d*(="). The degree deg f of a rational function fe F(x)ismax {deg g, 1+
deg h}, if f=g/h and g, h € F[x] with ged(g, h) =1. Kung [14] proves the following
lower bound for any arithmetic circuit a.

FAcT 2.2. deg ¢, =2P®. O

For a polynomial fe F[x] and A< F, we denote by f| A: A- F the map induced
by f. We use the monus function a - b =max {a — b, 0}.

LEMMA 2.3. Let F be an arbitrary field, A< F be finite with s=2 elements, fe
F[x]\{0} of degree b=1, a an arithmetic circuit over FU {x} computing f| A, and
d=D(a).

(i) If A< R, then d Zmin {log b, log (s =b+1)}.

(ii) If ANR, =, then d =log s —loglog s.

Proof. (i) Suppose that the function computed by a is i, = 2./ &,, with g,, g, ¢
F[x],g,#0,gcd (g,,82) =1, and let h=g,— g.f. Since A< R, and ¢,(a) =f(a) for
all ac A, we have h(a)=0 for ac A, and

[1 (x—a)lh

acA

If h =0, then deg g, =deg f=b. If h#0, then either deg g, = s or deg g,= s~ b. The
claim follows from Fact 2.2.

(ii) For a vertex v of the graph of «, let D(v) denote the depth of v. Thus an
input or constant vertex v has D(v)=0, and the output vertex v has D(v)=d. For
0=i=d, let L] consist of the vertices v with D(v)=1i, and L, < L! consist of those v
at which a division is performed. For ve L;, let n(v) be the numerator of the rational
function which is the divisor at v. Then deg n(v) =2'" for each v € L,. We may assume
that every vertex is connected to the output vertex, so that

#L=4L=2" Y degm(v)=2""%L,=29"

vel;

Since ANR, =&, we have

n (x-a)| H T)'(v)l S=#A= Z deg n(u)édzd_l:
acA 1=i=d 1=i=d
vel; vel;

which implies (ii). 0O

In view of Fact 2.2, one might hope to improve the lower bound in (ii) to log s.
Somewhat surprisingly, this is not possible. The following is an example of an arithmetic
circuit a over CU {x} of depth d and with # A=d2“">, where A=C\R,,.




COMPUTING POWERS IN PARALLEL 933

Example 2.4. LetdeN,n=2%" F=C,and a,, -, a,€eC algebraically indepen-
dent over @. Let « be a complete binary tree of depth d, with x, a,, x, a5, - -, x, a,
at the leaves, and alternating levels of +- and /-nodes. For example, the following
are among the functions computed at levels 1, 2 and 3, respectively:

x+a, x+a,+x+a3

e s S0 5 g
' xta, xta, xta,

One can show that the new denominator polynomials introduced by division steps
have no common zeros with the previous ones, and that the sum of their degrees is
d297?, which equals # (C\R,).
THeorEM 2.5. Let beN, b=1, F be a field, and F* = F\{0}.
(i) If F is infinite, then
d(my)=d"(my)=[log b].
(ii) If A< F is finite with s =2 elements, then

min {log b, log (;*b+1),logs—loglog s—i} =d(wh)=d (7)) = [log b1,

min {log b, log (s=b+1)}=d " (7h).

(iii) If Fis finite with q elements, 1 = b < qand m =min {[log b1, [log(g—5b)1},
then

min {log b, log (g— b+ 1),Iogq—loglog q-l} =d(nh)=d (wh)=[logb],

m=d (72)=m+ L.
If g—b—1 is a power of two or b= q/2, then d"(w%~) = m.
Proof. (i) follows from Facts 2.1(iii) and 2.2. For (ii), let @ be an arithmetic circuit
computing 7%, and S=ANR,. If # S=5/2, we find from Lemma 2.3(i)

D(a)=min [log b, log (g— b+ 1)}
If 4 5<s/2, then Lemma 2.3(ii) implies that
D(a)=log (4 (A\S)) —loglog (# (A\S)) = log ;— loglog s.

In (iii), we use Lemma 2.3(i) and Fact 2.1(iii) and (v). 0O

Now consider the following four problems, where u € F, and a, m € F[x] of degree
n are inputs, and beN with 2" '<b=2".

POWER,: Compute u”.

POWER,: Compute a” mod m.

POWER;: Compute a” mod x".

POWER,: Compute a” mod x", if a has constant term 1.

The coefficient vectors of a and m form the input, and one obtains a coefficient
vector as output; thus we now have to allow arithmetic circuits with many inputs and
outputs.

CorovrLAry 2.6. Let 1=i=<3 and a be an arithmetic circuit computing POWER,
everywhere.

(i) If F is infinite, then D(a) = n.

(ii) If F is finite with q elements and 1=b<g, then D(a)=
min {n, [log (g —h )]}



034 JOACHIM VON ZUR GATHEN

Proof. For POWER,, this is Theorem 2.5(iii). By using input a € F, any circuit
for POWER, or POWER, also solves POWER,. 0O

So much for the negative results that show that computing bth powers, where b
is an n-bit integer, requires depth {}(n) on arithmetic circuits. In only one case can
we hope for shallow arithmetic circuits over F, namely when F is small,say g = # F < n,
so that Corollary 2.6(ii) only gives a lower bound of order log n. Subsequent to this
paper, Fich and Tompa [6] gave fast parallel Boolean algorithms over nonprime large
finite fields of small characteristic.

The basis for the fast parallel powering algorithms in the next sections is the
following binomial expansion, which provides an algorithm for POWER, (where
a=1mod x):

a®"=(1+(a-1)’= % (f’)(a—l)'s z (f)(a—l)‘modx".

0=i=h

ProrosiTioN 2.7. POWER, can be coniputed by an arithmetic circuit of depth
O(log® n) and size n®".

Proof. The constants (}) can be “hard-wired” into the circuit, and one multiplica-
tion of polynomials modulo x" can be performed in depth O(logn). O

In characteristic zero, we could use the formula a” =exp (b log a) to obtain the
same result.

The algorithms to be discussed below use the Boolean circuit families for elemen-
tary arithmetic. Although a priori the individual circuits (one for each relevant input
length) of such a family are not required to be related to each other, it is convenient
to know that a description of the circuit for input size parameter n can be constructed,
say, by a (deterministic) Turing machine M oninput n in unary. If M is polynomial-time
bounded, then the family is P-uniform, and if the stronger requirement that M be
logarithmic-space bounded holds, then the family is log-space uniform. Ruzzo [18]
and Cook [4] discuss uniformity and parallel Boolean computations.

We avoid reference to the various notions of uniformity by using div (n) to denote
some function such that there exist Boolean circuits of depth div (n) and size n®"
that compute the division with remainder for n-bit integers. “Long division” yields
the trivial bound div (n) = O(log® n). By Beame, Cook and Hoover [2], div(n)=
O(log n) for P-uniform circuits, and by Reif [17], div(n)= O(log n loglog n) for
log-space uniform circuits. The “iterated” product of n n-bit integers can be computed
in depth O(div(n)) [2].

Note that the upper bounds in Theorem 2.5 are achieved by log-space uniform
families while the lower bounds make no uniformity assumption at all.

The depth bound of Propogition 2.7 can be improved by considering arithmetic
networks, a more general model of computation that encompasses both arithmetic
circuits and Boolean circuits. The interface between the two types of circuits is provided
in the one direction by testing an arithmetic value a -0 and producing a Boolean value.
In the other direction, one can select one of two arithmetic values according to the
value of a Boolean variable.

Reif [17] has shown that division with remainder of polynomials of degree at
most n can be calculated on arithmetic networks of depth O(log n), provided the
ground field F contains the roots of unity required for a Fast Fourier Transform.
Eberly [5] generalized this to arbitrary fields, by constructing “log-space uniform”



COMPUTING POWERS IN PARALLEL 935

families of arithmetic networks of depth O(log n loglog n), and “P-uniform” families
of depth O(log n) for division with remainder of polynomials. (These notions of
uniformity for arithmetic networks are defined in von zur Gathen [9].) If we use
divy (n) to denote the maximum of the Boolean div (n) and these arithmetic depth
functions over F, under both notions of uniformity, then also the iterated product of
n polynomial with degree at most n can be computed in depth O(div, (n)). For all
families considered, the size is polynomial in n.

The Boolean component of arithmetic networks allows us to solve a slightly
stronger version of POWER,: The binary representation of b can now be considered
to be part of the input. In the algorithm, even the constants (?) need not be hard-wired,
but can be computed in depth O(divy (n)) using arithmetic in F. This is clear if
char F = 0: one simply computes the iterated products for numerator and denominator
of the binomial coefficients, and then their quotient. If char F=p=>0, we can use

Lucas’ [15] formula:
b bo\( b,
()= () -+-mocr
i ip/ \ i

b=bﬂ+b1p+"', i=10+11p+‘

where

are the p-ary expansions of b and i, with 0=b,, i, < p. Given j = n, and p, b, we compute
b=|b/p’] =p|b/p’™"| in depth O(div (n)). The individual binomial coefficients can
now be calculated as for characteristic zero; no division by zero occurs.

CororiaAry 2.8. POWER, can be computed on arithmetic networks of depth
O(divy (n)). 0O

This statement comprises two results: log-space uniform families of arithmetic
networks of depth O(log n loglog n) for POWER,, and P-uniform families of depth
O(log n).

3. Integer powers modulo a prime power. In this section, we study the base case
for computing large powers of integers modulo another integer, namely with the
modulus being a prime power. In the next section we will use the Chinese remainder
algorithm for a more general case.

Throughout this section, n is an input size parameter, a and b in N are n-bit
numbers (i.e. 1=a,b<<2"),p=n is a prime, and 1=e=n We want to compute
a” mod p°. The fast parallel algorithm we get for the computation mod p® contrasts
with the fact that by Theorem 2.5 no arithmetic circuits over F of poly-logarithmic
depth exist for the same computation over a field F with p° elements. (However, Fich
and Tompa [6] present an arithmetic network over the prime field Z,< F of depth
O(log’ n) that computes a®.) |

Let us first consider the case p = 3. We use the well-known decomposition Z ;=
G x H (see e.g. [11, Chap. 4]), with the injective group homomorphism

a:Z,->Z,, rmoder’“—'modp’,
G =im a, H ={r mod p°: r=1mod p}.
Thus G=£Z,, # G=p—1,and # H =p°~'. We will split the problem of computing

powers in Z - into the corresponding problems in G and H. Our first task is to compute
(4



936 JOACHIM VON ZUR GATHEN

LemMma 3.1. Given r with 1=r<p=n and p=3 prime, one can compute s such
that

s=a(r)=r""modp*
by a Boolean circuit of depth O(log n- div (n)) and size n®".
Proof. Since # Z,=(p—1)p°', we have
s” '=1mod p° and s=rmod p

fors=r""".A quadratic Newton method for solving the first equation, with the second
equation providing an initial value, would yield the following recursion:

Sa=r,
(5:—1)p_1_ 5
=5 ,— — mod p°,
: (p=1)(s7-0" ik
1;5 {P

In order to avoid divisions, we consider the following division-free variant of this
Newlon iteration:

So=1T,
si=st (7 -1D)(1+p+p°+-- ])S{P " mod pzi,
=y <p2j.
For completeness, we check that the formula is correct, i.e., that
s*7'=1mod p*,

by induction on i. The case i =0 being clear, we set {=s7"}, so that

S 1=t (p- 1) (= 1)1+ - - - +p* )siE7V -
=(t=1)(1+(=1+p*)"?)
=(t—1)1—-1")=(—-1)(-t"*=---=1)=0mod p*.

Set I=[log e]. Then
sf7'=1mod p*,
and the uniqueness of Newton iteration guarantees that
a(r)=s mod p°.

The computation of s; from s;_, can be done in depth O(div (n)), and the total depth
of the resulting circuit is O(log n div (n)). 0

Algorithm INTEGER POWERS MODULO A PRIME POWER.
Input: An input size parameter n, integers a, b, p, ecNsuchthatp,e=n;a, b<
2", and p=3 is prime.

Output: ceN such that a” = ¢ mod p°.

1. If a=0, then return ¢ =0 and stop. Compute /€N such that p'¥a and p'"'fa.
If Ib=e, return ¢ =0 and stop. Otherwise replace a by a/p' [We can now
assume a # 0 mod p.]

2. Compute r such that

a=rmod p, l=r=p



COMPUTING POWERS IN PARALLEL 937

3. Compute s such that
SEa(r)Er”Mmodp", 1=s<p~
4. Compute h and u such that
h=bmodp-1, O=h<p-1,
u=s"mod p*, 1=u<p”.
5. Compute the inverse t of s such that
st=1mod p°, l=t<p’
6. Compute v and w such that

v=at mod p°*,

w= Y (?)(v—l)‘ mod p°,

O=i<e
1=v, w<p“
7. Return ¢ = p"uw.

Tueorem 3.2. Algorithm INTEGER POWERS MODULO A PRIME POWER
works correctly as described. For input size parameter n, it can be implemented on a
Boolean circuit of depth O(log n div (n)) and size n®'".

Proof. We can assume that a # 0 mod p, i.e., | =0. Note that s =r=a mod p and
v=1mod p, and therefore

b
v’=(1+(v-1)"= ¥ (i)(u—l)'zwmodp".
O=i=e
Since # £, =p—1, we also have
uw=s"v"=a(r)"v"=a(r")v’=a(r’)v’ = a(r)’»" = a” mod p*.
Thus the algorithm works correctly. We use a quadratic Newton iteration to compute
t in step 5:

to=r, t=t_,—(—t,_,+1*,s)modp*, 1=1<p®.
y P

Each iteration step can be performed in depth O(div (n)). This depth is also sufficient
for the iterated products required for the binomial coefficients (see end of § 2) and
powers of v—1 in step 6. Thus the depths are:

steps 1,2,4,6,7:  O(div (n)),
steps 3, 5: O(log n div (n)). 0

By exploiting the power of P-uniformity, we can actually get Boolean circuits of
optimal (up to constant factors) depth.

CoroLLARY 3.3. There exists a P-uniform family of Boolean circuits of depth
O(log n), whose nth circuit computes a” mod p° foralla, b, p, eeN witha, b<2"; ¢, p=n,
and p=3 prime.

Proof. Since div (n) = O(log n) for P-uniformity, it is sufficient to implement steps
3 and 5 of INTEGER POWERS MODULO A PRIME POWER in depth O(log n).
In the circuit for input size parameter n, we hard-wire for every (r, p, e) with I=Sr<p=
n,e=n, and p prime, a table of constants s,,. and 1,,. such that

P €

1 - -
Spe=r1"  mod p°, Lpe . Spe=1mod'p5; 1S5, t,.<p"



938 JOACHIM VON ZUR GATHEN

These are less than n” constants, and they can be computed in (sequential) polynomial
time. Then steps 3 and 5 can be replaced by a table look-up in depth O(log n). O
Remark 3.4. For r=a# 0mod p, we have

ﬂbil‘b_e-H z (?)re i l(a—r)imodpt.
D=i=e

By hard-wiring r*' for all r<p and 0=j < n, this formula yields another P-uniform

family of Boolean circuits for our powering problem, with depth O(log n). It also

works when p is 2 or not prime, so that Corollary 3.3 also holds for p =2. For log-space

uniformity, we obtain the following improvement.

CoroLLary 3.5. For p=2 and p=3, there exist log-space uniform families of
Boolean circuits of depth O(log n loglog n) and size n°®"' that compute a® mod p* for
all a, b<2" and e =n.

Proof. For p=2, we have r=s=t=1 in the algorithm. For p=3, we use the
residue system {1, —1} for ZJ, so that r=s=re{l1,-1}. O

In the first version of Reif [17], it was conjectured that no Boolean circuits of
depth (log n) O(1) exist to compute a” mod 2"; this conjecture is now disproven.

4. Chinese remaindering. In order to generalize the fast parallel algorithm for
powering with prime power moduli p° to more general moduli, we use, of course, a
Chinese remainder algorithm. It turns out that we first have to present Boolean circuits
for some other problems, which may be of independent interest. Inputs are the various
n-bit numbers denoted as a, b, a,,- -+, a,, m, my, -+, m, with k= n, and output an
n-bit number ¢ as below:

POWER: c=a" mod m.
GCD: c=ged(a, m)=1.

MOHT: {acslmodm ifged (a, m)=1,

c=0 otherwise.

(““modular inverse™)

LAGRANGE: ¢=0modm-: - m,

={1 modm, ifged(m,,my:--m)=1,
- |0mod m, otherwise.

(“Lagrange interpolation coefficient’),
CHINREM:  If ged (m;, m;) =1 for all i # j,

then ¢=q; mod m; for all i

Otherwise ¢ =0.
(“Chinese .remainder algorithm™)

FACTOR: compute the prime factors of m (with multiplicities).

Using DIV for the problem of integer division with remainder, we have NC'-reductions
(see Cook [4] for terminology):

CHINREM = LAGRANGE+GCD and LAGRANGE=MODINV+ DIV,
The second reduction follows by using an inverse d of m, -+ + m, mod m,; then

c=d- (my- - my) is sufficient. The iterated product m, - - - my is reducible to division
(Beame, Cook and Hoover [2]).



COMPUTING POWERS IN PARALLEL 939

At the present time, none of these problems is known to be in NC—i.e., solvable
in depth (logn)?"—or log-space complete for P. All problems, except possibly
FACTOR, are in P.

We need fast parallel algorithms for these problems in special cases. We use
“SMOOTH?” to denote the condition that the moduli m, m,, - - -, m; are n-smooth,
i.e., that p=n for every prime factor p of m or m,. Note that the condition depends
on the parameter n; where this parameter is clear, we will not mention it explicitly.
The results would also hold if we used p = n® for some fixed ¢. The number of smooth
integers is a well-studied topic in analytic number theory (see e.g. Hildebrand [12]).

THEOREM 4.1. The following problems can be computed by Boolean circuits of
polynomial size and the stated depth:

(i) SMOOTH-FACTOR and SMOOTH-GCD in depth O(div (n)),

(il) SMOOTH-MODINV, SMOOTH-LAGRANGE, and SMOOTH-CHINREM
in depth O(log n - div (n)).

Proof. We leave away the “SMOOTH-". First consider the trivial algorithm for
FACTOR: For each number p = n, test whether p is prime (by a sieve method) and
determine its multiplicity in m. This can be performed in depth div (n), by computing
p.p’,p’, -+, p" and testing for each i whether p’ divides m. Now GCD is trivial.

Now consider MODINYV in the special case where m = p°, p prime. We have the
following algorithm:

1. Test if pla, and return ¢ =0 if “yes.”
2. Find by exhaustive search ¢,€N such that
1=¢,<p, ac,=1mod p.
3. Compute ¢=a 'mod p° by a quadratic Newton iteration as in step 5 of
INTEGER POWERS MODULO A PRIME POWER.
The circuit depth for this algorithm is dominated by step 3:
O(log e- div (n)) = O(log n div (n)).

Next we consider LAGRANGE. If m,=p* for a small prime p, then we can solve
LAGRANGE in depth O(log n div (n)) by the reduction to MODINV+ DIV. For the
general case m, = p}' - - - p;r, with small pairwise distinct primes p,, - -, p, (and no p,
dividing m, - - - my), we compute ¢, -+, ¢, such that

{1 mod py,

G= e €yt e

Omod p! -~ - pilipifi - - - prrmy - - my.

The power products can be computed in depth O(div (n)). Each ¢, is given by one of
the special LAGRANGE problems already solved, and

o L o

solves the current praoblem. Therefore LAGRANGE and CHINREM can be solved in
depth O(log n div (n)).

Now for the general case of MODINYV, where m = p{' - - - p;» with small primes
pi, we have the algorithm:

1. For all i, 1 =i=r, compute ¢ such that ac,=1mod p;,
2. Compute ¢ such that for all i=r, ¢=c¢; mod p}'.
Then

VYi=r ac=ac,=1modp;=ac=1mod m. i}

We now have a fast parallel algorithm for powering.



940 JOACHIM VON ZUR GATHEN

Algorithm INTEGER POWERS.

Input:  an integer n (the input size parameter), and n-bit integers a, b, m, where

belN, and meN is n-smooth.

Output: ceZ such that ¢=a” mod m.

1. Call FACTOR with input m to compute py,***, P,y €;," * *, € such that m=

pii -+ - piris the prime factorization of m.

2. For all i, 1=i=r, call algorithm INTEGER POWERS MODULO A PRIME
POWER with input n, a, b, p=p;, and e=¢; to obtain output ¢;€Z. [Then
¢;=a®” mod p?.]

3. Call CHINREM with input a,,---,a,m,---,m, where m;=pj, a=
¢; mod my, 0= a; < m;, and return the output c

Tueorem 4.2. Algorithm INTEGER POWERS can be performed by a family of
Boolean circuits of depth O(log n div (n)) and size n®'".

Proof. Correctness of the algorithm is clear. By Theorem 4.1, steps 1 and 3 can
be performed in depth O(log n div(n)) and size n®", and similarly for step 2 by
Theorem 3.2. 0O

Note that on input of arbitrary n-bit numbers a, b, m, step 1 can be used to
determine whether m is n-smooth.

CoroLLARY 4.3. There exists a P-uniform family of Boolean circuits of depth
O(log n), whose nth circuit computes a® mod m for all n-bit integers a, b, m, where m is
n-smooth.

Proof. In view of Theorem 4.1(i) and Corollary 3.3 it is sufficient to implement
step 3 of algorithm INTEGER POWERS in depth O(logn). For any p, e, g with
1=p, e,g=n and p # q prime, we hard-wire the constant u,,, such that

Upey * 9 =1mod p°, 1=u,,<p’,
in the circuit for input size parameter n. This is a table of less than n” constants, and
any u,,, can be looked up in depth O(log n). At a call of CHINREM with moduli
my=p, -, m=pr, with 2=p, = n, we compute the inverses

P
Ui = Uy e pp»

for i # j, so that
vypi'=1mod pii.

This can be done in depth O(logn), and using the reduction CHINREM=
MODINV+ DIV, step 3 can be performed in depth O(logn). 0O

5. Polynomial powers modulo a prime power. In this and the next section, we
translate the development of §§ 3 and 4 for integers into the setting of polynomials
over a finite field F. The main result is a Boolean circuit of depth O(log® n loglog n)
that computes a® mod f*, where a, fe F[x], a has degree at most n, [ is irreducible
and such that (# F)%%/ = pn, b is an n-bit number, and e = n. We also get an arithmetic
circuit over F of the same depth. The above circuits are log-space uniform; we also
obtain P-uniform circuit families of optimal depth O(log n).

So let F be a finite field of characteristic p and with g =p' elements. We assume
that F is represented as (p, g), where g€ Z,[ ] is an irreducible polynomial of degree
| such that F=2Z,[t]/(g). Elements of F are represented by polynomials from Z,[]
of degree less than /, and an element of Z,, is given by the binary representation of an
integer between 0 and p—1.



COMPUTING POWERS IN PARALLEL 941

Now let f€ F[x] be monic irreducible of degree d, e =1, and R = F[x]/(f*). We
first consider a decomposition R™ =G x H of the group of units of R, analogous to
that for Z-. Note that # R=¢“ and # R*=(q"—1)¢?“", so that we expect the
“small” group G to have g — 1 elements, and the “large” H to have g“‘*~" elements.
We consider the field K = F[x]/(f), and the mapping

: gdle—1)
a. K> = R rmod f — r? mod f*.

We abbreviate the exponent as e =q*“"". If rc F[x] and r#0mod £, then r* is a
unit mod f*°. & is well defined, since r* —s* = (r—=s)“ foreveryr, se F[x],and e=2°"'=
24 = g9V =¢; thus r=s mod f implies that r*=s° mod f*. Obviously, « is a
(multiplicative) group homomorphism. (It is also additive where defined.) Since

r'=rmodf
for all re Flx], « is injective. We now let
G=ima, H={gmodf*: g=1mod f}.

These are two subgroups of R™, with # G=g“~1and # H =g¢*“"". Since GNH =
{1}, we have the desired decomposition R*= G x H. The two groups can also be
characterized as

G={ueR*: u"" =1}, H={ueR™: u"m_“-—‘l}.

Just as in Lemma 3.1, we first describe a fast parallel computation of a. We again
denote by n the input size parameter, and assume that g° <n, de < n. The second
constraint is quite natural, since the usual representatives for R have degree up to
de —1. We assume that there exist Boolean circuits of depth div (n) and size n©'" that
compute the division with remainder, iterated product, and inverse mod x" for poly-
nomials of degree at most n. Then div(n)= O(logn) for P-uniform circuits, and
div (n) = O(log n loglog n) for log-space uniform circuits, by Eberly [5]. As of now,
no Boolean circuits of depth (log n) ®" are known to perform arithmetic in Z, using
some standard representatives if p has about n bits; inversion mod p is the problem.
This can be avoided by using a redundant representation u/ v for elements of Z,, with
u,vcZ,0=u, v<p and v # 0; the upper bounds quoted above hold for this representa-
tion. But since in our case p=n, we can actually find the inverse of v mod p by
exhaustive search in depth O(log n).

LEmMMA 5.1. Given re F[x] with 0=deg r < deg f, one can compute s € F[x] such
that

die-1)
s=r?

mod f*

by Boolean circuits of depth O(log n div (n)) and size n
Proof. We solve the equation

(1)

s =1 mod f*, s=rmod f
by a quadratic Newton iteration. The depth of the iteration is [log e]. Each step
5= s+ (s = 1)si%? mod £

can be performed in depth O(div (n)). Comparing with Lemma 3.1, one factor ¢* — 1=
—1 in the denominator becomes trivial. [

We use P-POWER to denote the polynomial analogue of POWER,: with input
size parameter n €N, we are given p, g, a, b, m such that p, beN, p is prime, b<2", ge
Z,[1] is irreducible of degree I=n,a, meZ,[t,x], deg, (a),deg, (m)<I, deg, (a),



942 JOACHIM VON ZUR GATHEN

deg,(m)=n, and have to compute some c€ Z,[1t, x] such that ¢=a” mod m in F[x],
where F=2Z,[1]/(g). Let g= p'. We say that m is n-smooth if there exist f;, -+, f, e
F[x] “Tedl.lClbIe of degree at most d, and e,, - - -, ¢, €N such that f=f51- .- f7 and
d
q =n
The following is the translation of algorithm INTEGER POWERS MODULO A
PRIME POWER to the setting of polynomials.

Algorithm POLYNOMIAL POWERS MODULO A POWER OF AN

IRREDUCIBLE.

Input: An input size parameter n €N, and p, g, a, b, m as in P-POWER, where

m=f* is a power of an irreducible fe F[x].

Output: ce F[x] such that ¢=a” mod f*.

1. If a =0, then return ¢ =0 and stop. Compute /€N such that f'/a and f"*'ta.
If Ib=e, return ¢=0 and stop. Otherwise replace a by a/f. (We can now
assume a # () mod f))

2. Set d =deg f, and compute re F[x] such that

a=rmodf, 0=degr<d.
3. Compute s € F[x] such that
s=a(rmodf)=r?

0=deg s <de.

die—1)

mod f*,

4. Compute heN and u c F[x] such that
h=bmodg’-1, 0=h<g’-1,
u=s"mod f°, O=deg u<de.

5. Compute the inverse t€ F[x] of s such that
st=1mod f*, 0=degt<de.

6. Compute v, we F[x] such that

v=at mod [*,

w= ¥ (?)(v— 1) mod f*,

O=i<e
0=deg v, deg w << de.
7. Return ¢ ="uw.

Turorem 5.2. The above algorithm solves P-POWER. If m is a power of an
irreducible polynomial f with q°*’ < n, it can be implemented on a Boolean circuit of
depth O(log n div (n)) and size n®".

Proof. Everything follows just as for Theorem 3.2. The inverse ¢ in step 5 is
calculated by a quadratic Newton iteration. The initial value to such that st;=1mod f
can be found by exhaustive search in depth O(log n), since ¢ = n; alternatively, one
can solve the corresponding dxd system of linear equations over F, in depth
O(log® d div (n)) or O((loglog n)* div (n)). All steps except steps 3 and 5 require only
depth O(div(n)). O

CoroLLARY 5.3. There exists a P-uniform family of Boolean circuits of depth
O(log n) that computes P-POWER for inputs with m a power of a small irreducible
polynomial.



COMPUTING POWERS IN PARALLEL 943

Proof. Given n, for every p, g, f, e as in P-POWER with input size parameter n
and p'*®/ = n, and for every polynomial re (Z,[1]/(g))[x]\{0} of degree less than d,
let s, t,ee € (Z,[1]/(g))[x] be the unique polynomials such that

Sefes = " mod f¢, Syeglefeg =1 mod [, 0=deg 5,4, deg t,,, < de.
There are less than n’ log n possible choices of (p, I, g, d, [, e, r), and therefore all
S,ree and 1,5, can be hard-wired into the nth circuit of a P-uniform circuit. Given these
constants, steps 3 and 5 and therefore the whole of algorithm of POLYNOMIAL
POWERS MODULO A POWER OF AN IRREDUCIBLE can be performed in depth
O(logn). O

The following is an improvement analogous to Corollary 3.5.

CoroLLARY 5.4. There exists a log-space uniform family of Boolean circuits of depth
O(log n loglog n) and polynomial size, which computes P-POWER for all m = f° with f
linear and p' = n.

Proof. Oninput a, b, f = x — z, e with z € F, we can assume that a(z) # 0, and then
the algorithm simplifies to

c=a(z)’ % (?)(a(i.}_ l)i

=a(z)"*" ¥ (?)a(x)" “a-a(z)) mod f*. 0

O=i<e

For arithmetic circuits, the field F and the exponents b and e have to be fixed.
The appropriate modification of the algorithm above yields the following resuit.

CoroLLARY 5.5. Forany finite field F, any b <<2" and e = n there exists an arithmetic
circuit over F of depth O(log” n loglog n) and polynomial size that computes a® mod f*
for all inputs a, f € F[x] of degree at most n such that f is irreducible and (# F)**/ = n.

This algorithm can be implemented on a log-space uniform family of arithmetic
circuits. For P-uniform families of arithmetic networks, one obtains optimal depth
O(log n).

6. Polynomial powers over finite fields. In this section, we make a rather obvious
adaptation of the algorithm from § 5 to more general moduli, via Chinese remaindering.
A fast parallel powering algorithm results, for smooth moduli. In particular, we obtain
a P-uniform family of Boolean circuits of optimal depth O(log n).

As usual, F is a finite field with char F=p and # F=g=p', and n is an input
size parameter. We consider problems P-CHINREM, P-FACTOR defined by the
same conditions as the corresponding problems in §4, except that now
Ay, v, ag,my, -, my, c€ F[x] are polynomials of degree at most n; b is an n-bit
integer. Polynomials are represented by their coeflicient sequences.

For any field F, P-CHINREM can be solved by arithmetic networks over F of
depth O(log’ n) (von zur Gathen [8]). For finite F, this can also be performed by
Boolean circuits of depth O(log” n), using redundant notation for elements of Z,.(See
Borodin, Cook and Pippenger [3] for Boolean circuits for linear algebra; also Eberly
[5].) Clearly P-FACTOR can be computed on Boolean circuits of depth O(div (n)),
if m is n-smooth.

THEOREM 6.1. P-POWER can be computed on Boolean circuits of depth
O(log n div (n)) and size n®", for inputs with m being n-smooth.

Proof. Tn order to compute a” mod m for a, m € F[x], we first factor m = 5 - - - f
where f,,-- -, f, are the irreducible factors of m. By Theorem 5.2, we can compute



944 JOACHIM VON ZUR GATHEN

¢;€ F[x] such that ¢,=a” mod f% for each i Then we interpolate ¢;, -+, ¢ by
P-CHINREM to get the desired ce F[x] with e=a’mod m. [0

CoroLLARY 6.2. There exists a P-uniform family of Boolean circuits of depth
O(log n), whose nth circuit computes P-POWER if m is n-smooth.

Proof. By Corollary 5.3 and the fact that P-FACTOR can now be solved in depth
O(log n), it is sufficient to consider P-CHINREM. As for Corollary 4.3, we simply
hard-wire the required modular inverses U € (Z,[t1/(g))[x] such that

upr - f'=1mod £, O0=deg u,,-<edeg/

where p is prime, ge Z,[t] is monic irreducible of degree I, f# f'e (Z,[t]/(g))[x] are
irreducible monic of degree at most d, p'“ =n, and 1=e=n. This yields a table of
polynomial size, which can be constructed in polynomial time. [

7. Conclusion. We have shown that large powers of integers or polynomials
modulo an element can be computed fast in parallel, provided the modulus is smooth,
i.e., has only small prime factors. The basic question, however, remains open:

Open Question 7.1. Can a” mod m, for n-bit integers a, b, m, be computed on
Boolean circuits of depth (log n)°" (and size n®")?

One can hope for further positive results in special cases; a candidate seems to
be the case where m is prime and m —1 is smooth. No successful algorithm exists that
makes use only of arithmetic mod m for prime m (Theorem 2.5).

The number a® is too long to be computed even in polynomial time, but Allan
Borodin has asked the following.

Open Question 7.2. Given n-bit integers a, b, i, can the ith bit of a” be computed
in depth (log n)®" (and size n°")?

It is not even clear how to do this in (sequential) polynomial size. The correspond-
ing questions can be asked for polynomials over finite fields. Fich and Tompa [6] give
positive answers to both questions for polynomials over finite fields of small characteris-
tic. For computations by arithmetic circuits over large finite fields, the answer is negative
to both questions.

The two most basic finite arithmetic structures with m elements (where m is a
“large” integer) are Z,, and GF(m). The extreme cases are when m is a power of 2
(or a power of a small prime, or smooth for Z,,), and when m is prime, in which case
Z,=GF(m).

The parallel powering problem is solved in both cases with m =2".

.

REFERENCES

[11 H. ALT, Comparison of arithmetic functions with respect to Boolean circuit depth, Proceedings 16th Annual
ACM Symposium on the Theory of Computing, Washington, DC, 1984, pp. 466-470,

[2] P. W. BEAME, S. A. Cook AND H. J. HOOVER, Log depth circuits for division and related problems,
this Journal, 15 (1986), pp. 994-1003.

[3] A. BoroniNn, S, Cook AND N. PIPPENGER, Parallel computation for well-endowed rings and space-
bounded probabilistic machines, Inform. and Control, 58 (1983), pp. 113-136,

[4] 8. A. Cook, A taxonomy of problems with fast parallel algorithms, Inform. and Control, 64 (1985),
pp. 2-22.



COMPUTING POWERS IN PARALLEL 945

[51 W. EBerLy, Very fast parallel matrix and polynomial arithmetic, Proceedings 25th Annual 1EEE
Symposium on the Foundations of Computer Science, Singer Island, FL, 1984, pp. 21-30.

[6] F. FicH anp M. Tompa, The parallel complexity of exponentiating polynomials over finite fields,
Proceedings 17th Annual ACM Symposium on the Theory of Computing, Providence, RI, 1985,
pp. 38-47; J. Assoc. Comput. Mach., to appear.

[7] J. von zuR GATHEN, Parallel algorithms for algebraic problems, this Journal, 13 (1984), pp. 802-824.

[8] . Representations and parallel computations for rational functions, this Journal, 15 (1986), pp. 432-
452.
[9] , Parallel arithmetic computations: a survey, Proceedings 12th Internat. Symposium on the Math.,

Foundations of Computer Science, Bralislava, Springer Lecture Notes in Computer Science, 233,
1986, pp. 93-112.

[10] J. vOoN ZUR GATHEN AND G. SEROUSSI, Boolean circuits versus arithmetic circuits, Proceedings 6th
Internat. Conf. Computer Science, Santiago, Chile, 1986, pp. 171-184.

[11] H. Hassg, Number Theory, Grundlehren der math. Wiss., 229, Springer-Verlag, New York-Berlin-
Heidelberg, 1980.

[12] A. HILDEBRAND, On the number of positive integers =x and free of prime factors >y, J. Number
Theory, 22 (1986), pp. 289-307.

[13] D. E. KnuTH, The Art of Computer Programming, Vol. 2, 2nd ed., Addison-Wesley, Reading, MA, 1981,

[14] H. T. KunG, New algorithms and lower bounds for the parallel evaluation of certain rational expressions
and recurrences, J. Assoc. Compul. Mach., 23 (1976), pp. 252-261.

[15] E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions
trigonométriques, suivant un module premier, Bull. Soc. Math. France, 6 (1877/78), pp. 49-54.

[16] I. MUNRO AND M. PATERSON, Optimal algorithms for parallel polynomial evaluation, I. Comput.
System Sci., 7 (1973), pp. 189-198.

[17] J. RE1¥, Logarithmic depth circuits for algebraic functions, this Journal, 15 (1986), pp. 231-242. Extended
Abstract in Proceedings 24th Annual IEEE Symposium on the Foundations of Computer Science,
Tucson, AZ, 1983, pp. 138-145.

[18] W. L. Ruzzo, On uniform circuit complexity, J. Comput. System Sci., 22 (1981), pp. 365-383.

[19] V. STRASSEN, Berechnung und Programm. 1, Acta Inform., 1 (1972), pp. 320-335.



