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If g and h are polynomials of degrees r and s over a field, their functional composition
f = g(h) has degree n = rs. The functional decomposition problem is: given f of
degree n = rs, determine whether such g and h exist, and, in the affirmative case,
compute them. An apparently difficult case is when the characteristic p of the
ground field divides r. This paper presents a polynomial-time partial solution for
this “wild” case; it works, e.g., when p? | r.

1. Introduction
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If F'is a field and g,h € F[z], then f = goh = g(h) € Flz] is their (functional)
composition, and (g, ) is a (functional) decomposition of f. Given f € F[z], there exists
an essentially unique complete decomposition f = fio foo0 -+ o fy, where fy,---, fi € Flz]
are indecomposable polynomials. This result is valid if the characteristic p of F does not
divide the degree of f. These facts and the history of the problem can be found in the
references given below.

Formally, we consider the following decomposition problem: given f € F[z] of degree
n, and r,s € N with n = rs, decide whether there exist g, h € F[z] of degrees r, s, respec-
St vp]y, such that f = goh. Barton & Zippel (1985) and Alagar & Thanh (1985) presented
z (exponential-time) algorithms if char(F) = 0. For the general “tame” case, where p does
n
Y

5i

ot divide r, a polynomial-time algorithm was given by Kozen & Landau (1989) (a first
ersion of which appeared in 1986); variants are in the later papers Gutiérrez et al. (1989)
and von zur Gathen (1990). For the “wild” case, where p divides r, Kozen & Landau
(1989) derive from their “structure theorem” an algorithm over fields with a factorization
- procedure for univariate polynomials. They obtain a polynomial-time algorithm if f is
irreducible and F a finite field; in fact, even a fast parallel N C-algorithm. For F arbi-
rary with a polynomial-time factorization procedure and f irreducible, they can find a
omplete decomposition into indecomposable polynomials in time O(n]"g”'). Ritt’s First

—
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438 J. von zur Gathen

Theorem gives a uniqueness property in the tame case (see the references above); for lack
of such a property the (computational) connection between complete decompositions and
decomposition with r and s given is not clear in the wild case. (The terminology of “tame”
and “wild” is borrowed from number theory, regarding r as some “ramification index”;
see e.g., Hasse 1980.)

The polynomial-time methods for the tame case are based on Kozen & Landau’s ap-
proach of directly solving the equations obtained from comparing coefficients in “f = goh™.
The present paper extends this approach to the wild case, in which we always have
p < r < n. We obtain an algorithm only for the following special case. Writedegg = r = gt
with ¢ a power of p and p 1 t. We will throughout the paper assume that ¢ > p; otherwise
we are in the tame case. Then g is called “simple” (for lack of a better word) if

g=z"+ br—:'-":r_‘l + br—i_lxr_{‘l 4+ o+ by

with b._; # 0 and either p t i or i > ¢q. Furthermore, g = 2" is simple. Thus when p? { r,
so that ¢ = p, every g is simple; z'7* 4 2'"=¥P 4 ... s not simple if u < .

The main result of this paper is a polynnmlal—tlme reduction from “simple” decompo-
sitions f = g o h with g simple to factorization of polynomials with degree less than n.
Thus over finite fields, we have a (deterministic) polynomial-time algorithm. It does not
yield information about decompositions with g not simple.

The algorithm solves one by one the polynomial equations arising from comparing
coefficients of 2™, 2"~1,...in “f = go A". All partially constructed solutions are main-
tained until remgmzed as not leading to an actnal decomposition. Giesbrecht (1988) has
shown that no such approach can lead to a general polynomial-time algorithm, by exhibit-
ing polynomials with more than a polynomial number of (non-simple) decompositions.
Giesbrecht concentrates on the very wild case of “additive polynomials”, where nonzero
coefficients occur only at exponents which are powers of p. Fortunately, this case turns
out to have enough internal structure to allow interesting conclusions such as the above.

The present work can be summarized as exhibiting a further significant case of poly-
nomial decomposition which is reasonably easy to solve; the general case still awaits a
polynomial-time solution.

For perspective, we note that over sufficiently general (“computable”) fields the exis-
tence of a decomposition is undecidable—in marked contrast to the tame case, which can
be solved over any field just by field arithmetic—and that decompositions may require
field extensions of exponentially large degree. This explains, in a sense, the restrictions
imposed for solving the problem.

The algorithm requires the factorization of certain univariate polynomials. Conversely,
we exhibit a special class of polynomials whose factorization problem is linear-time re-
ducible to the problem of finding simple decompositions.

Some of the present results were reported in von zur Gathen, Kozen & Landau (1987)
with the qualifier “simple” erroneously omitted.

b

2. Reducing simple decomposition to factoring

We consider the following decomposition problem DEC,’;,. We have a field F, integers
n,r € N with r dividing n, and f € F(z] of degree n. Let s = n/r. The problem is to decide
whether there exist g,h € F[z] of degrees r,s, respectively, such that f = go h = g(h)
is the composition of g with &, and, in the affirmative case, to compute g and h. [ is
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indecomposable if no such g and h exist. The “wild” case is when the characteristic p of
F divides r.

We may assume without loss of generality that f,g,h are monic, and that h(0) = 0.
Denoting by M C F[z] the set of monic polynomials, we consider the relation

DECy, = {(f,(9,h)) e Mx M?: f = goh,degg =, degh = s,and h(0) = 0}.

Formally, the computational problem has f € M and r,s € N as input, and as output the
set of all (g, h) € M? with (f,(g,h)) € DECE,. In the introduction, it was defined when
g is simple, and when a decomposition is simple. sDECf‘,_ denotes the set of all simple
decompositions.

We fix the following notation for the rest of the paper: f = 2" + ap_yz™! + - - - + ag,
g=2"+b 1z 4. dbo, h=2"tey2® 4otz and up = 20+ 0180 4 4
¢s—k412°7¥*1 is the high-order part of h, for 0 < k < s. We write r = gt, where ¢ > p is
a power of p and p +¢. Thus n = gst and ug = 0.

In the wild case, both the uniqueness and the rationality of decomposition may fail
(Fried & MacRae 1969, Dorey & Whaples 1974). Iere are some simple examples of this
wild behaviour.

ExampLE 2.1. To illustrate the algorithm below, let us take p=r = ¢=2,s =4, n = 8,
and f = 2% + ayz? + ay2? + a1z € Flz). “f = goh” is equivalent to:

s 2
ag=c3 + by, ag=ci+ by, a3 = byey.

The algorithm takes the first equation in two unknowns and solves for ¢, in terms of an
indeterminate z; later we find an equation for » alone and substitute its solutions for by.
¢y is similarly determined from the second equation:

€2 = Vas+ vz, a1 =/a;+ Va(Yag + Vz).

The third equa,tio-n, taken to the 4th power, then yields:
z' 4 a4 a3z* + af = 0.

We take b; to be any of the solutions, and substitute to obtain the corresponding ey, ;.
&=

ExampLE 2.2. Let F = 73, [ = 2%42*—23+2% 42 € Flz], h = 2% 4cz, g = 23+bya?+by 2.
Then v = z° 4+ 22 4+ 1 € F[2] has no linear factors, and hence is irreducible. The high
order terms of g o h are 28+ byz? + (¢® + 2bye)z%; if ¢ is in F, then f # goh. However, let
7 € Fa7 be such that v(y) =0,¢ =7, =1,b = =2 4+ 1. Then f = go h. This shows
that decompositions may exist in algebraic extensions without existing in the ground field.
Also, the three conjugate solutions obtained in this way are not “essentially equivalent”;
thus Ritt’s first theorem on uniqueness in characteristic zero (Ritt 1922) also fails in this
case. [

EXAMPLE 2.3. Our algorithm would not find the following non-simple decomposition. Let
p=s=2,r=4,n=8, f=2%+ a2 +a,z? + a,z € Fg[z]. Then “f = goh” is equivalent
to

0=bs.ay = C? + by, ay = bgC% + by,ay = byeq.
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It is straightforward to solve these equations:
cI +a4c¥ +ase; +a;=0,b = c? + cucf + az,b; = cf + a;.

When a4 = a3 = 0 and a; = 1, the seven solutions are given by arbitrary ¢; € F¥ (so
that ] = 1) and b; = ¢, by = ¢f. Then f is simple, but each of the decompositions
is not simple. Unfortunately, it is not clear how to replace the output-driven condition
“g is simple” by a condition on the input f (see Proposition 4.2). The algorithm below
determines values of the ¢;'s, using one equation after the other, leaving at each stage the
value of at most one b; (the “leading” one after b,) undetermined; in this example that
would be b;. However, the first set of four equations in this example can only be solved
after taking each of them into account, Thus both by and by are left undetermined until ¢
is computed. The present solution for the simple case might be extended by generalizing
the above trivial solution in a systematic way. O

To each power of z in “f = g o h” corresponds one equation in the coefficients of f,
g9, and h. We will consider these equations in descending order: z™,z"~1,.... We write
coeff(v, ) for the coefficient of z* in v € F[z]. The following equations form the basis of
the algorithm. For 1 <k < s,1<i< g, and 7 € N, we have

coeff(h",n — qgk) = (coeff(h, st — k))? =

Il

2.1

(tes—k + coeff(uj, st — k) = te?_, + coeff(u,n — qk), 0]
coeff(h",n — j)=0if g ¢ j, (2.2)

coeff(A"~',n — is — k) = —ic,_g + coeff(u} ", n — is — k), (2.3)
coeff(h"~!,n — j) = 0if 0 < j < is. (2.4)

In (2.1), we use A" = (h*)? and coeff(h, st — k) = te,_j + coefl(uf, st — k), and the fact
that (a+b)? = a?+b for a,b € F[z]. Similarly, for (2.2) we use that A” = (ht)? = ¥ hix'
if A = 37, hiz'. In (2.3), only uj;; can contribute, since

deg((h — upy1)"™") < (r—i)(s—k—1) < n—is—k,

using that i + 1 < ¢ < 7. The contribution is (r—1)es_p = —tc,_p from the summand
es_k2* ¥ . (2*)"="=1 which occurs r — i times when the power is multiplied ont; no other
summand involving ¢,_,z*=* contributes, since its degree is too small. Finally, (2.4)
follows from the fact that deg h™~" < s(r — i) = n — si.

The algorithm proceeds in stages Sy, o+, 8,_1. Stage S; computes all solutions with
by_y = -+ =by_jy1 =0 and b,_; # 0 by determining an initial (high-order) part of any
possible h, then b,_;, and finally the rest of h and g. Most of the complications arise in
the computation of b,_;. Stage §;_4 passes the leading part of b (namely those ¢,_; with
k < (i—1)s/q) to S;. Step 2 calculates some new c,_ (with k < is/q). Step 4 deals with
a special case, where b,_; can be determined from a linear equation. For the general case,
we let z be an indeterminate value for b,_;, and compute in step 5 (within stage S;) values
sk corresponding to ¢,y (for (i — 1)s/q < k < is/(g — 1)) depending on z, using the
equations in z and 7,_; now corresponding to (2.1) through (2.4). (The same equations
are used in the special case, only z is then not an indeterminate, but has already been
given a value.) In step 6, the resulting equation v = 0 for 2 is computed and factored,
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then solved in step 8, and several specific nonzero values ay, - - -, @, are determined for z,
and the algorithm continues with b,_; = a; for each j separately. Step 9 determines the
remaining ¢,_x. Given a candidate h € F[z] of degree s with A(0) = 0, there is at most
one g € Fz] with f = g o h; this g is computed in step 10 by Taylor expansion as in von
zur Gathen (1990). The algorithm terminates for the solutions of stage S;.

The normal control flow is as follows. Step 1 is an initialization. Stage §; (for 1 < i < ¢)
starts in step 2 and proceeds to steps 3 through 11. At that point, all decompositions for
stage 5; have been output, and control returns to step 2 for stage S;,;. Four exceptional
situations may arise; they are handled by “goto” statements. In steps 4 or 6 it may become
clear that stage S; terminates permaturely (either because b,_; = 0 is forced, or because
non-simple decompositions may exist); control then passes to step 2. In step 5 we may
already know b,_;; then we skip to step 9. Finally, for the last value of i, namely i = q,
we finish the computation of h in step 2, skip to step 10 to calculate g, and terminate.

The main technical problem is finding an equation v as required, and proving that it
is nontrivial, i.e., that v is not the constant zero.

The algorithm generalizes that of Kozen & Landau (1989) for the tame case, which
performs step 2 (with i = 1, = 1,¢ = r) to calculate h, then a variant of step 10 to obtain
g; the reader is encouraged to study their algorithm first. A generalization of the present
algorithm beyond the simple wild case might first compute h and several (not just one)
coefficients of g, then the remainder of g.

If F is a field of characteristic p > 0, K an algebraic closure of F, and ¢ a power of p,
then :

F'={a:a€F}, F'={a€ K :a" € F}, F'/*" = | | F'/¥ C K.
iEN
If F is finite (or perfect), then F1/7™ = F,

Algorithm Simple decomposition.
Input: r,s € N with r,s > 2, and f = ¥ a,z* € F[z] monic of degree n = rs.

Output: Representations of all decompositions (g,k) of f, with (f,(g,k)) € sDECK

T,
where K is an algebraic closure of F. (Thus f = goh, and g is simple.) If non-

simple decompositions possibly exist, then a corresponding message is given.

1. Write r = g with ¢ a power of p = char(F) and p 1 t. If ¢ = 1, use some algorithm
for this tame case, and stop. Set i = 0.

2. Replace i by i + 1. For (i — 1)s/q < k < is/q, compute ¢,_, € F/9 from:
tel_, = an_gk — coeff(u},n — qk) € F.
If i = g [so that h is known], set j = m = 1, (1) = h, and go to step 10.

3. Let z be an indeterminate over F, and L = F(2)1/?". Set a flag F to false. [F
indicates whether a value has been determined for z.]

4. If ¢ 1 is, replace z by an_;s, and set F = true. If a,_;, = 0, then set b,_; = 0 and
go to step 2.
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5. For is/q < k < is/(q — 1), compute y,_x € L from:
t‘}‘_(:_k = an—qk ™ COEﬁ(n; 4 3??;_‘., L S qk)u

where n. = E c,_;:c‘_1+ Z *y,,;z"_‘.
0<l<is/q isfy<i<k

[Thus 7 now plays the role of uy.] If F = true, then set j = m = 1, cil_)k =Tl
uil) = uy for k as above, b‘(,‘_}l- = b,_;, and go to step 9. [In this case, 2 has been
replaced by a value from A in step 4, and m = uy € Flf”w.]

6. If p|i, output “a non-simple decomposition possibly exists”, set b,_; = 0, and and
go to step 2. If p t 7, let e € N be such that ¢°|s and ¢°*! 1 s. If F = false, let
k=1s-(1-¢%)/(g—1) EN, and

# 3 i : q9°
= (tzq,_ﬁ + @n_is—rx — 2 - coeff(nl™", n — is — r;)) €L,

(It turns out that » € F[2] is a monic polynomial of degree d = (¢**! = 1)/(g—1) <
2q°, which will now be used to determine a value for 2.] Factor v over F into
irreducible monic polynomials vy, - -, v, of degrees dy,---,d, withd; +---+d, = d.
Order these polynomials so that z,vy,---,v, are pairwise distinct, m < pu, and
{z,v1,-+-,om} = {2, U1y, Uu}. [Step 4 dealt with the possible factor z, for which
b =100

=]

For 1 < j < m, do steps 8, 9, and 10.

8. I F = false, let a; = 2mod v; € E; = F[z]/(v;) be a root of v;. We now have

values b(J_)- = a; # 0 and calculate ¢V, = vs—k(e;) for the y,_; computed in step
r—i ) g s=k 1 .
5, and the corresponding u}__’” = nk(@;). [We do not keep track of the other d; — 1
solutions conjugate to a;.]
9. Foris/(g— 1) € k < s, compute c({)k:

; LR s ¥ » ]
Ci"r_)k = (ib(r}_}g) . (—fln_u_k - coeﬂ((uﬁj])” + bf.&-[uf})"‘, n—is— k)) :
[We now have all coefficients of a candidate h?) for a decomposition.]

10. Compute the corresponding gt) by Taylor expansion. If f = g(?) o k), then return
the solution (¢, R()). If i = ¢, then stop.

11. Set b,_; = 0 and goto step 2.

In order to solve sDECf‘,, it ‘would be sufficient to run the algorithm only on those
coeflicients computed in steps 2, 5, and 8 that turn out to be in F, corresponding to some
linear factors v; in step 6. However, a satisfactory solution to the decomposition problem
should also return the decompositions over algebraic extensions; the above algorithm does
this. We let K be an algebraic closure of F, define DEC. = DECE | Flz] x K[z]?, and

n,r
consider the computational problem of testing whether a monic input f € F[z] of degree

n = rs has an “absolute” decomposition f = g o h with (f,(g,h)) € DECE : similarly

n,rt



Wild Polynomial Decompaosition 443

sD—EHC',F,:,. for g simple. If 7 is an automorphism of K over F and 7 its extension to K[z],
then also f = #(g) o #(h). If such a decomposition exists, we also have to compute
representations of all decompositions; only one representative for each set of conjugate
solutions is required. A representation of a decomposition now consists of an irreducible
polynomial v € F[z] and ¢',h' € F[z,2] with deg, ¢’ = r, deg I’ = s, deg, ¢’ < degu,
deg. h' < degv, corresponding to g = ¢’ mod v € (F[z]/(v))[z] C E[z], where E =
F[z]/(v), and h = k' mod v € E[z] with f = go h.
The following fact will be used without explicit reference in the sequel.

FACT 2.4. Let F' be a field of characteristic p > 0, a € F, and g € N a power of p. Then
there ezists at most one b € F such that b% = a. If F is finite with u elements and u* =g
then b = a*'/9 satisfies the cquation. Ifa€, then a’ = a.

Proor. Torallbe F,(z-b)Y=29—b% O

The next lemma shows that v in step 6 is not the zero polynomial, so that only a finite
number of values for z has to be considered. Recall L = F(2)/7™ ¢*|s, ¢"t! t s, and
define R= F'/9[z], and 0, =14 g+ -+ ¢~! = (¢ — 1)/(g—1)for0<j<e.

The numbers «; defined in the lemma below are the threshold values at which some-
thing interesting happens to the 7,_x’s. We divide the set of all k in stage S, namely
ko =0 < k < is/(g— 1), into intervals [£j,6K541), for 0 < j < e. Recall that a vy, in
general involves high-degree roots of z and of field elements. (i) states that within each
interval, a certain power of vy,_; (with exponent ¢’) is actually a polynomial in z, with
coefficients at most gth roots of elements of F', and whose degree is at most o;. This yields
the crucial fact (ii) about the threshold value k = £;j. For this value of k, the ¢?th power
of 95—k is actually a polynomial in F[z] (no roots in F required) of degree exactly a; (if
p 1 i), and we determine its leading coefficient as (i/t)?. The central point is that this
coefficient is nonzero; this translates into the condition “p t i” in the definition of simple
decomposition.

LEMMA 2.5. Let 1 < i < g, for 0 £ j < e define k; = is- ;¢ € N, and Koy =
[is/(g—1)]. Let0 < j<e.

(i) If K; < k < k41, then 47, € R and deg, 77, < 0.

(it) There erists 6; € F|z] such that
L
W= (5)" +8 € i,

and deg_ é; < a;.

(iii) v as computed in step 6 (with p + i) of Simple decomposition is a monic polyno-
mial in F(z] of degree 0.4y = (¢°*" — 1)/(¢ - 1).

(iv) Let (g, k) be a solution computed in step 10, and E DO F be the field generated by

the coefficients of g and h. There ezrists a field F|, with F C E C R CK and
[Fy : FY9) < ey
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Proor. We have k = &, in step 6, kg = 0, k1 = 18/q, and
gl o= 14

Bebevop=ieay il farik-s dfy.
Assume that x; < k < Kj41. (2.1), (2.3), and the fact that coeff(h"!,n — ¢k) = 0 for
is/g < k <is/(g—1)and ! > ¢ imply

tyl_ = @n_qk — coeff(ni,n — gk) — 2 - coeﬂ(nk‘i, n— gk).

Abbreviate !
p = coeff(nf, st — k), ™ = coeff(n; ™", n — gk),
so that , /
¥ J—= . -
0y = a7 - (em) (25)

If a term v,_;z* ! in m contributes to 7, then

n—gk £s-Il+(r—-i-1l)s=n—-is-1 =

. , (2.6
is+1< gk = qrjp1 +q(k - k1) =15+ k5 + q(k — Kj11). )

Since k < K;41, we have | < k; for any [ satisfying (2.6). No mixed terms v,_, - ¥s-1, With
1,13 > Ky contribute to m, since ¢ > 2 implies that

18q
g=1’

is
20s——)+(r—i—-2)s<n-—
q
Concerning p, again no mixed terms v,_y, - ys—1, With ly,l2 > is/q contribute, since
is 18
2(s——)+(t—2)s < st.— ——.
: (t-2) o

We now prove claim (i) by induction on k. It holds for & < &;, and now let k > k. Suppose
that v,_; contributes to p, and define m by K, <1 < Kpy41; then m < j since [ < k. By

the induction hypothesis, 7/, € R has degree at most ay,, so that 7, = ()7 has
degree at most ¢'~™ . g,,, < o;. It follows that

pT € R, deg,(p”) < o;.

From (2.6), we find

7 € R, deg,(n7") < 0.
It follows from (2.5) that -yjj_k € R has degree at most max{o;, ¢’ ' + ¢j_1} = 0. Thus
(i) is proven. j

Claim (ii) is clear for 7 = 0 (where 44_x, = 75 = 1), and for an induction we assume
j=>1. Set

w= coeﬁ("?n:l T s qﬁj‘)s
Condition (2.6) and fact (2.3) imply that

F= cocﬂ”(nnj“-, n—gK;) = —tYs—n,_, + ¥
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Then from (2.5) and the inductive hypothesis we have

-]
g?-! 4

o - 1 ; =1
73—.-:_, =1 ' (an——qpcj i pq + 2(‘373—&}_1) = (ch)q ) =
] 3=1 fz\ %11 ] 3=1 3=1 s s |
-0 Lo, - - = 9 = =5
tz ( r ) + tz'? 5J_1 +1 (an—qxj pi'-' (,.,tp}q )
It remains to show that the last four summands are in F(z] and have small degree. The
second summand is in F|z] and has degree at most

qj_‘j +(g;1 - 1) = oy =1

Also, ,o"""*1 € R, and the degree of p” € F[z] is bounded by ¢ - 0;_1 = o; — 1. Tinally,
o’ € R has degree at most o;_,, and

¢+ degwqj“] <¢l4q.0i5= 0; —1.

This proves (ii).
To prove claim (iii) of the lemma, let

e—1

e (coeff['r;;:‘, n— 18— rc,,))
Again, no mixed terms contribute to 1, since
s—h+s—lh+(r-i-2)-s<n—is—x,

for I, 13 > is/q. By (i), ¢ is in R and has degree at most g._;. Thus

te e e <
=% - q =
S je+1 i (t(z-rs“’“d)q A an—is—ng = vq) =

f e fiz\% {° o - .
jetl izt (T) + jetl (227 6. + ﬂ;-m—n, — 27 4p7).

The first summand is 2%¢+!, and the second summand is a polynomial in F[z] of degree
less than o.4;.

For claim (iv), take the solution (g(?), A(1)) given by some «; in step 8, and Fy =
F'3[a;]. Then all ¢, € Fy, and [Fy : F'/7] < 0,4, O

THEOREM 2.6. Let F be any field. The algorithm Simple decomposition reduces the
problem sDEC of finding simple decompositions of polynomials over F' to the problem of
factoring univariate polynomials of dégree less than n over F.

Proor. To prove correctness of the algorithm, first note that c,_x resp. v,_x are uniquely
determined in steps 2 and 5, by Fact 2.4. From the following equivalences, it is clear that
the equations in steps 1 through 5 and 9 follow from (2.1) through (2.4):

n—gk>n-—is < k<%,
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n—gk>n—is—k — k<

n—gk<n—is—k < k>

g—1
When 1 <i < gand k =k, €N as in step 6, then ¢ k. From (2.2) and (2.3), we have

Qn_is—x = —tbr_iCs_x + by_; - coeff(ul ™", n — is — k).

Thus v(z) = 0 for any value for 2 leading to a decomposition. We have now proved that
the coefficients in any decomposition satisfy the equations used in the algorithm. On the
other hand, any candidate produced by the algorithm is tested in step 10, so that the
algorithm produces exactly one representative for each set of conjugate solutions. 0

REMARK 2.7. Any solution computed in the algorithm must satisfy
Gris—k = 2% coeﬁ'(?};;;, n—is—k)

for 1 <k < s with q t is + k. Any practical implementation would incorporate all these
checks, which may determine z much earlier than Simple decomposition does, or find
that no simple decomposition exists before step 10. However, these checks may all be

trivial “0 = 7. 07, and do not help for our worst-case analysis. Here are some of these
checks; step i’ should go after the end of step i of the algorithm.

2'. If there exists some k with 0 < k < is, ¢ + k, and a,_s # 0, then return “no
solution” and stop the algorithm.

3. If ¢,; # 0 for some | with 1 < < is/q and q 1 is + [, let k be the smallest such /,
and do the following. Replace z by a,_;s_3/cs—, and set j = m = 1 and F = true;
if ap_is_x = 0, then set b,_; = 0 and go to step 2, else go to step 5.

8 . _ : '

coeff((uf))” + 8, (u)  — f,n— k) # 0

for some 0 < k < 4s¢/(g - 1), then stop. [This a; does not lead to a decomposition.]

3. Simple decorhposition in the wild case

We now put the reduction of Section 2 to work. We obtain results at four different
levels, from worst (undecidable) to best (polynomial-time and poly-logarithmic depth).
The first two negative results -are meant to explain the restrictions we impose in the
positive results.

1. The simple decomposition problem is undecidable in general.

2. I F is not finitely generated over its prime field, sDEC may require algebraic field
extensions of F' of exponential degree.

3. If F is finitely generated, we have a polynomial-time algorithm.
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4. If F'is finite, we have a fast sequential (O(n*)) and a fast parallel (O(log? n)) algo-
rithm. If p? does not divide n, we obtain O(n!+<) sequential and O(logn) parallel
time.

We have to specify the model of computation somewhat more precisely. We fix a
field F. The undecidable example of Proposition 3.1 below works over a “computable
field” (Frohlich & Shepherdson 1955), has inputs encoded over a finite alphabet, and
the Turing machine as model of computation. The arithmetic operations and zero-tests
are Turing-computable. Example 3.2 and Theorem 3.3 deal with the purely algebraic
question whether fields of exponentially large degree may be required (the answer is: yes
and no); presumably exponentially large degrees make the problem infeasible in any model
of computation.

The positive results deal with finitely generated ficlds, where polynomial-time Boolean
factorization procedures are known (Chistov & Grigoryev 1982). Finite ficlds are of special
interest.

Fix a field F of characteristic p > 0. We denote by p-ROOT the problem of deciding,
on input @ € F and ¢ € N, whether a has a p°th root b € F with b*° = q, and, in the
affirmative case, of computing the unique such b. In other words, the polynomial 2*° — a
has to be factored; the input length is p® plus the length sufficient to encode a. FACTOR
is the problem of computing a complete factorization of a polynomial in F[z], given its
coefficients. We have reductions

p—ROOT < sDEC < FACTOR.

The last is gwen by the algorithm, and the first by mapping an input a, e for p-ROOT to
[ = 2% 4 aa?* (for odd p; f = z32° + az?" will do for p = 2). Then f has the unique
decomposition f = z”° o (22 + R/az) with degrees p® and 2, which is simple.

PROPOSITION 3.1. For any prime p > 3, there exists a field F of characteristic p such
that sDECE, is undecidable.

Proor. Let p > 3 be a prime. A construction by Fréhlich & Shepherdson (1955) leads to
infinite (“computable”) fields I of characteristic p, for which the decision problem: “given
a € F,is a a pth power?” is undecidable; see von zur Gathen (1984a), Remark 5.10. By
the reduction to sDEC, the latter question is also undecidable. O

Similarly, sDEC{E is undecidable for some fields F* of characteristic 2. This construc-
tion can be modified so that for every prime p and every § C N, we have a field Fg, of
characteristic p such that the decision problem for § is linear-time reducible to sDIu(,
Thus there are fields over which the decomposition problem is NP-hard, exponential- spacp
hard,

We will now see thal the problem -ma.y produce very large field extensions, if the field
is not finitely generated over its prime field.

EXAMPLE 3.2. Let p be a prime, y;,3;,... indeterminates over Z,, F = 7 p(¥1,¥2,...),
and K an algebraic closure of F. For any power r > 2 of p, we exhibit polynomials
fri9r € Flz], hy € K[z] such that (f,,(g,,h,)) € DECK,, wheren =347, f, = g, ok, is
the unique decomposition of f, over K, and the coefficients of h, generate a field of degree
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at least 2V over F. Let = y‘”r EKforieN,s=r41,9.=2", h, = 2°+ 2,121
ek 2, o2 € Klz)yand fo= g, oy = 2™ g 18V e ob guiiahT € F[z]. Step
1 of Simple decomposition with i = 1 determines the leading coeflicients of &, and one
checks that b,_; = 0 for 1 < ¢ < r in any solution g, so that (g,, h,) is the only solution.
The ficld generated by the coefficients of h, has degree r™ > 2V™ over F. O

THEOREM 3.3. Let F be finitely generated over Z,, say by m generators, K an algebraic
closure of F, f € F[z] of degree n = rs, and E C K the field over F generated by
the coefficients of one particular solution (g,h) as computed by the algorithm Simple
decomposition on input f. Then [E : F] < n™*!,

PRrOOF. Let Ay,..., A, € F generate F as a field over Z,. Then F'/9 is generated over F
by AY/Y,..., A%, and thus [F1/4 : F] < g™. Using Lemma 2.5 (iv), we find

[E:Fl<q™- (¢ -1)/(g-1) <r™rs <a™1. O

CoroLLARY 3.4. Over a finitely generated field F, sDEC can be computed in polynomial
time. :

ProoF. Polynomial-time factorization algorithms are available over finitely genecrately

fields (Chistov & Grigoryev 1982). By Theorem 3.3, the required field extensions have
polynomial degree. 0O

We next analyze the cost of the algorithm. We denote by M(n) the number of field
operations in I sufficient to multiply two polynomials in F[z] of degree n, and use M(n) =
nlognloglogn for any field (Schénhage & Strassen 1971, Schénhage 1977, Cantor &
Kaltofen 1987). For a field F, let Sp(d) be a number of operations in F sufficient to
factor a univariate polynomial over I of degree at most d, and Rp(g) to extract a qth

root in F. In particular, Rp(q) < Sp(g). We assume polynomial bounds, so that e.g.
Sp(2d) = O(Sp(d)).

THEOREM 3.5. Let r be a divisor of n, q the largest power of char(F) dividing r, and ¢°
the largest power of q dividing s = n/r. Algorithm Simple decomposition for sDEC
can be performed with the following number of operations in F.

(i) O(n*(lognloglogn)® + ¢Sk(¢%) + sR(q)),
(11) O(M(n)logn + sR(q)), if p* t n.

PROOF. During the algorithm, we may have to compute in field extensions E; of F' of
degree d < a.1. In the following, let E denote such a field extension. A gth root in
E9 of an element in E can be computed in O(dRp(q)) operations in F. One arithmetic
operation in E can be performed with O(M(d)logd) operations in F. If dy,---,d,, with

di + -+ dpn < 0ep1 = (¢ 2 1)/(g — 1) < 2¢° are the degrees of the field extensions
computed in step 8, then

> M(di)logd: = O(M(¢%)logq®),
1<j€m

and similarly for the other cost functions R and §. Thus in the estimate we can assume
the worst case: only one field extension, of maximal degree a,.,,.
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Let 1 < i < ¢q. We estimate step by step the number B; of operations in F during stage
S; of Simple decomposition. The asymptotic estimates “O” involve absolute constants
only. In step 1, we use repeated squaring, retaining only the highest is coefficients. For
the required coefficients of 1]~ in step 5, we compute the highest gk < gis/(¢— 1) < gs
coefficients of ;™" by repeated squaring and truncating the lower coefficients after each
step. By Lemma 2.4 (i), 7 € FV/2*" [21/%) has degree at most ojin 2V ifk; <k < Kjqs.
We obtain the following number of operations in F.

2.0 ((% - £2) - (Rp(q) + M(s)logr)) = O(s/q- (Rr() + M(s)logr)).

5 3 O(logrM(deg,p me) - M(gs) + (deg,u/p ve-t)R(3))

is/q<k<is/(g=1)
Ky SR<R 41

= 0 (M(gs)logr rgje. (k541 — 55)M(0) + 0, R(q))
= 0 (M(qs)logT Ty ¢jc. 477 M(¢?) + 4° R(q))
=0 (e-(M(gs)logrlogsloglogs + ¢ R(q))).
6. SF(0es1) = O(SF(¢%)) plus terms as above.
9. O (s -logrM(n)M(g%)) = O (sn?(lognloglogn)?).
10. O (M(n)logn - M(g*)), by Fact 2.1 (iv) of von zur Gathen (1990).

Using that ¢® < s, we find the total cost as

0 (nz +e-(M(gs)logrlogsloglogs + ¢°R(q)) + Sr(q®) + iR(q’)) :

Adding up for the ¢ — 1 values of i, claim (i) follows.

If p? { n, then either ¢ = 1 and we are in the tame case with cost O(M(n)logn) (von
zur Gathen 1990), or ¢ = p and thus p 4 i in step 6. Thus no factorization is required,
and only steps 1 through 5 and 9 through 11 have to be accounted for. For the better
time bound, step 2 is implemented with O(2Rp(q)+ M(is)logt) operations, using Newton
iteration for all equations ‘

tes_p = a:ﬁk — coeff(ul, st — k). O

We have used the estimate O (sn?(lognloglogn)?) for step 9. With an appropriate
Newton iteration, one can in fact implement it with O(logrM(s)M(g¢®*)) operations in
F'/9, which improves the first summand in the estimate (i) to M(n)?logn.

For f € F[z] of degree n, r dividing n, and K an algebraic closure of F, let us consider
the number

d, = # (sDEC,r N ({f} x K[2]?))

of simple decompositions of f.

COROLLARY 3.6. In the above notation, we have By 2 0ne
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Proor. Writing r = gt, ¢° | 5, and ¢°*! 1 s as usual, we have at most
q0e41 <q-2¢° < 2rs=2n
simple decompositions. O

This result contrasts with Giesbrecht’s (1988) examples of polynomials with more than
polynomially many (non-simple) decompositions.

COROLLARY 3.7. For a finite field F = GF(p™) of characteristic p, algorithm Simple
decomposition for sDEC,, can be performed with O(m3nt) operations in Z,, and with
O(M(n)M(m)logn) operations if p? + r. In parallel, it can be implemented on an arith-
metic circuit over Z, of depth O(log?(mn)) and size (mn)°(1),

ProOF. Since we may assume that p < n, we have Sp(g®) = O(n®), and Rp(q) =

O(log(p™) +logq) = O(mlogn). For the required parallel algorithms, see von zur Gathen
(1984b). O

4. Reducing special factorization to simple decomposition

If f(0) =g(0)=0and f =goh, then h is a nontrivial factor of f. However, in the tame
case the decomposition problem can be solved without recourse to factoring. In the wild
case, our algorithm does use a factoring routine. Is this really necessary?

For an affirmative answer, we fix a prime p, and for simplicity only consider F = Z,,.
We call a polynomial w = 3" w;z' € F[z] “special” if it has degree g,4qy = 14+ p+ -+ p°
for some € > 1, wy # 0, and

w0 = Jj<e+l i=p +pt 4.4
If ay # 0, then our old friend
w=z" o+ a,;zﬁ -+ at:sg:‘:‘l 4 a‘]‘
from Example 2.1 is special, with e = 2. It is conjectured that factoring special polynomials

is essentially as hard as factoring general polynomials.

THEOREM 4.1. The problem of factoring special polynomials is linear-time reducible to
the decomposition problem.

PrROOF. For0<j<e+1,let 7j =ptl=i 4 pt~i 4 ... 4 p* = g, . p*~3 1! (with 7o = 0),
and w = Ygcjceqq v;27 be special and monic. Let

a5 = (=1, f= Y az? € Fla]
0<j<e+l

of degree n = p**!, and let r = p, s = n/p = p*. Let K be an algebraic closure of F. We
claim:

Vg,h € K[z] (f,(g,h)) € DECK, <=

Jae K w(a)=0andg=2a"+azand h = Z cp,-zpj and
0<5<e
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C:I:i-.j = Z (—l)ia"‘apen_,“ for0<j<e. (4.1)
0<i<y

This claim implies that the decomposition problem for f requires the output of a represen-

tation of each root in K of w (up to conjugates), from which we can read off the complete

factorization of w. Since each root a of w is nonzero, each composition factor g is simple.
For “4=", one simply checks that (4.1) implies

(C;,_,-_,] + ucpz—j - ﬂpe...j )?} = G,
so that
cze—j—l + acp‘-.f = ap'-—f (4.2)

for 0 < j <e, cpe =1=a,,and 0 = w(a)= ac; — 1, so that indeed f = goh.
For “==", let (f,(g,h)) € DEC,‘E’,. One first checks inductively that b,y = ...
by = 0, using that

0= an_is = coeff(g o h,n — is) = b,_;

for 1 <4< p—2. Now f = goh implies equations (4.2), which, together with bjc; = a;,
imply (4.1). O

The definition of “simple decomposition” is in terms of the decomposition factor a,
which is part of the output. The following is a sufficient (but not necessary) criterion in
terms of the input f for a decomposition to be simple.

ProrosiTION 4.2. Let (f,(g,h)) € DECE‘,., p = char(F), g > p the largest power of p
dividing v, assume p t s, and let

l=min{A: ) =nor(an—_y #0 and g 1 A)}.
Ifpt 1, then g is simple.

PROOF. As usual, we write g = 2" + b,_;z7~" 4+ - .. 4 by, with b,_; # 0. We may assume
that 1 < < g. Since g f is, we have coeff(h”,n — is) = 0, and thus

n—is = coeff(b,_;h" ™', n — is) = b,_; £ 0.

Thus I = is, and p 1 i implies that g is simple. O

Conclusion

While the tame case of polynomial decomposition has found a satisfactory solution, the
general wild case remains open. Kozen & Landau (1989) have given an (exponential-time)
algorithm over fields with a (polynomial-time) factorization procedure, and the present
results show how to compute all simple decompositions in polynomial time. Tt would be
interesting to have more general polynomial-time methods. Giesbrecht’s (1988) examples
of more than polynomially many decompositions indicate that a totally new approach may
be required.

Further directions of research concern decompositions of multivariate polynomials or
rational functions, and polynomials over more general rings; most of these questions still
need both a mathematical understanding and algorithms. Dickerson (1989) applies poly-
nomial decomposition to the inversion of automorphisms of polynomial rings.
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