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TESTS FOR PERMUTATION POLYNOMIALS*
JOACHIM von zur GATHEN'

Abstract. If Fy is a finite field and f € Fylz], then f is called a permutation polynomial if
the mapping Fg — F, induced by f is bijective. This property can be tested by a probabilistic
algorithm whose number of operations is polynomial (in fact, essentially linear) in the input size,
i.e, in deg f - logg. This is extended to “almost permutation polynomials,” whose value set consists
of almost all elements of Fy.

Key words. permutation polynomials, values of polynomials, finite fields, Euclidean remainder
sequence, subresultant, probabilistic algorithm

AMS(MOS) subject classifications. 11T06, 12Y05, 68Q40

1. Introduction. A univariate polynomial f € Fy(z] over a finite field F, with
q elements (g a power of a prime number) induces a function Fq — F, via a — f(a).
If this function is bijective, then f is called a permutation polynomial. Permutation
polynomials have been studied since Hermite [14] and Dickson [9], and recent interest
stems from potential applications in public-key cryptography (see Lidl and Mullen
[18]); reference to other uses is given in the latter article. A list of all permutation
polynomials of degree at most 5 is given in Dickson [10] and Lidl and Niederreiter
[19]. We may always assume, without loss of generality, that deg f < q.

Given an arbitrary polynomial f € F,[z] of degree n, one can test whether it is
a permutation polynomial simply by producing its list of values (see §2). Another
general test goes back to Hermite and Dickson (see § 3). In their survey paper, Lidl
and Mullen [18] pose as an open problem:

(P1) Find an algorithm of lower complexity than O(gn) to test whether a given
polynomial is a permutation polynomial of F,,.

For such a test, the input size—the number of bits required to represent f—is
about nlogg. The above-mentioned tests use exponential time, for large ¢, and no
polynomial-time tests are in the literature. Lidl and Mullen (18] quote some criteria
in terms of the coeflicients of f. We present a probabilistic test whose number of
operations in Iy is essentially O(nlog g), i.c., essentially linear in the input size n log g.

In §2, we briefly consider the “simple” test and find that off-the-shelf techniques
from computer algebra already improve the running time slightly, without any new
insights into the problem. Hermite's classical test has been one of the most important
tools in the study of permutation polynomials, both for theoretical and practical
purposes. Section 3 gives a probabilistic variant of this test, reducing the running
time from €(g?) to essentially O(q). In §4, we derive a criterion saying that f is a
permutation polynomial if and only if g; = 0, where g5 € Fqly] is a new polynomial
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whose coefficients are polynomials in the coefficients of f. This criterion is equivalent
to one given by Raussnitz [23]. The main result of this paper is in §5, where we show
how to calculate g¢(u) fast for randomly chosen u in some finite extension field of F,,.
The resulting polynomial-time probabilistic test always gives the correct answer if the
input is a permutation polynomial. If it is not, it may give the incorrect answer, but
with controllably small probability e. The running time is essentially proportional to
loge=1. If we use e = ¢g~1, the running time is O(nlogq), up to factors logn: softly
linear running time.

Precious few classes of permutation polynomials are known (see Lidl and Mullen
[18]), and a random polynomial in F4[z] of degree less than g is a permutation polyno-
mial with very small probability ¢!/q? ~ e~%. (Recall that the polynomials of degree
less than g correspond bijectively to the functions F; — F,.)

To enlarge the pool of candidate polynomials, we generalize the notion of permu-
tation polynomial as follows. Suppose some p € N is given, and let V(f) = #f(F,)
be the size of the image of f. We say that f is p-large if the image of the mapping
[ has at least ¢ — p elements: V(f) = g — p. Thus f is 0O-large if and only if f is a
permutation polynomial.

Section 6 gives a criterion for p-large polynomials analogous to the criterion in
§4 for permutation polynomials, and §7 gives the resulting test. It is a probabilistic
algorithm with expected time polynomial in nplogg; in fact, the time is softly linear
in nplogq.

The method presented here suggests the following general question: which (spe-
cial) problems can one solve in (random) polynomial time for polynomials of expo-
nential degree given by small arithmetic circuits? Section 8 briefly discusses this.

A “naive” test for permutation polynomials is to choose some elements u € F, at
random and check whether each has exactly one preimage under f. At first sight, it
looks as if this test has little chance of success, e.g., for a polynomial whose values
leave out only very few elements of F,. However, a geometric study of permutation
polynomials, initiated by Hayes [13], leads to the essentially equivalent notion of
ezxceptional polynomials. This property can also be tested in random polynomial
time, and the approach shows that the above naive test has a good chance of success.
Its running time is about the square of the time for the algorithm presented here
(von zur Gathen [12]). Shparlinskiy [26] presents a deterministic test using essentially
0(n3¢*/?) operations.

2. The simple test revisited. Given f € F,[z] of degree n, one can produce
its list of values and sort them, to determine whether f is a permutation polynomial.
This takes O(ng) arithmetic operations, plus O(qlog” ¢) binary operations for sorting.
Alternatively, one can test whether the ¢ values are distinct with O(qlog? ¢loglog q)
arithmetic operations (Baur and Strassen [3]).

Since we know what the g values have to be, we can do better by checking the
condition ;

I &= f() = 2% -,

=
VEF,

which is equivalent to f being a permutation polynomial. All f(v) can be computed
in O(qlog® nloglogn) arithmetic operations, and the product can be calculated at
the same cost (see Borodin and Munro [4]).

3. Hermite’s test revisited. Hermite’s criterion says that f € Fy[z] is a per-
mutation polynomial if and only if
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(i) f has exactly one root in Fg,

(i) Vi,1 <i<q—2, deg(f rem (z9—1z)) <q-2
(Lidl and Niederreiter [19, Thm. 7.4]). Here, (g rem h) € F,[z] is the remainder of g
on division by h: (g rem h) = g mod h and deg(g rem h) < degh (assuming h # 0).
The obvious implementation of Hermite's test requires about ¢ multiplications of f
with a polynomial of degree less than g, each followed by a reduction modulo z9 — z.
Even when n = deg f is small, say constant, this may require Q(q?) operations in F,.
We now implement this test more efficiently.

With a new indeterminate y, we have

(F+et = ¥ 1(?;1)3,@—1—*,«*

0<isg—

Yy e+ Z (q i 1) y9 1 mod 29 — 2,
1<i<q-2

1]

where r; = f' rem 29 — g for 1 < i < q. Each of these binomial coefficients is nonzero
in Fy (Lucas [20]; Lidl and Niederreiter [19, Exercise 7.1]). Let

r=((f+)7" = f777) rem (2% — z) € Folz, y),
and s € Fy[y] be the coefficient of z9~! in r. Then we have
(1) == g,

Since deg, (f+y)?™! = g—1, we have deg, s < g—1. Computing (f+y)? ! rem (z9—z)
as a bivariate polynomial would again result in cost £(¢?). However, we can substitute
a randomly chosen u € Fym for y, from a suitable extension Fym of Fy, and compute

r(u) = ((f+uw)? ! = fY rem (27 — z) € Fom[z],

and s(u) as the coefficient of 7~ in r(u). We return “YES” if s(u) = 0, and “NO”
otherwise. (We also check condition (i): degged(z? — z, f) = 1.)

To estimate the cost, let M : N — R denote a “universal” cost of multiplication,
Le., let it be such that two polynomials of degree at most n over a ring R can be
multiplied in O(M(n)) arithmetic operations in R, and two n-bit integers can be
multiplied with O(M(n)) bit operations. We can choose M(n) = nlognloglogn
(Schénhage and Strassen [24], Cantor and Kaltofen [7]). If g, h € F,[z] are polynomials
of degree at most n, then the division with remainder of g by h (if h # 0) can be
performed in O(M(n)) operations in F,.

PROPOSITION 1. The probabilistic algorithm given above can be implemented with
O(M(q) log g-M(m)) arithmetic operations in Fgq. Its oulput is correct with probability
at least 1 — g*—™,

Proof. The algorithm can be performed in O(M(q)log q) operations in Fym, us-
ing “repeated squaring.” Elements of Fym are represented by their coordinates in
(Fg)™, and a single arithmetic operation on such elements can be performed with
M (m) operations in F,. Finally, the ged condition can be checked with O(log ¢ M (n))
operations in Fy (Aho, Hopcroft, and Ullman [1, §8.9]). Thus the total cost is
O(M(q)logg - M(m)) operations in F,. (We have neglected the cost of construct-
ing Fgm; see §5.)

Assume that (i) holds. If f is a permutation polynomial, then s = 0 and s(u) = 0.
If f is not a permutation polynomial, then s # 0 and s(u) = 0 occurs with probability
at most degs/¢™ < ¢'™™. O
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We can make the error probability arbitrarily small, by choosing m appropriately.
The running time of this test is still at least linear in g. However, the idea of random
substitutions will lead to a substantial improvement in §5.

In practical applications of Hermite's test, one stops of course as soon as degr; =
g—1 is found for some ¢ < g—2. In the same vein, our algorithm would first calculate
f2~1 rem 29 — x by repeated squaring, and stop whenever one of the (few) powers of
J(rem z? — z) calculated is found to have degree ¢ — 1. One proceeds similarly in the
subsequent computation of certain ((f +u)' — f*) rem 2% — z by repeated squaring.

4. A criterion for permutation polynomials. By definition, a polynomial
[ € F4lz] is a permutation polynomial if and only if for all u € F, there exists a
unique v € Fy with f(v) = u, or, equivalently, z — v divides f — u in Fy[z]. Since F,
is a finite set, surjectivity is sufficient:

[ is a permutation polynomial
< VYueF,weF, f(v)=u
< WVueF,veF;, z—v|f—-u

For two nonzero polynomials a = apma™ + -+« + ag, b = bpa™ + -+ + by € Fy[z],
we denote by ged(a,b) their monic ged. If ap, b, # 0, then

Gy, Q-1 iy ag
2, -1 o
£} O By S o, o= Oa (m-+n)x (m-+n)
R(a,b) = g s CEORI IR T S €T,
bn bn—-l bﬂ
bn bﬂ.—l " P b(]

is their Sylvester matrix, consisting of n rows of coefficients of a, and m rows of
coefficients of b. Furthermore, res(a, b) = det R(a, b) is their resultant. A fundamental
fact is that

ged(a,b) #1 < res(a,b) =0
(see van der Waerden [28]). Since 29 —z = Hbei-*, (xz — b), we have

[ is a permutation polynomial
= VYuel, ged(z9—z,f—u)#1
& Yu€F, res(z9-2z,f—u)=0
= y?—y|res(z?—z,f—1y).

Here, y is a new indeterminate, hy = res(z?—z, f —y) € Fy[y], and the divisibility
condition is in Fy[y].

What are the degree and leading coefficient of hy? The constant term f(0) — y of
f—y € Fq[y][z] occurs ¢ times on the lower right part of the diagonal of R(z7—z, f—y),
and nowhere else. The cofactor in the Laplace expansion for the determinant of that
part of the diagonal is the upper left n x n-submatrix, which is upper triangular
with 1’s on the diagonal, and has determinant 1. Thus hy has degree exactly g,
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and leading coefficient (—1)9. It follows that the condition “y? — y|hs” is equivalent
to “hy = (=1)%(y? — y).” We have proved the following criterion for permutation
polynomials.

THEOREM 2. Let f € Fy[z], and

g5 =res(z? —z, f —y) = (~1)%(y? — y) € Fyly].

Then f is a permutation polynomial if and only if g5 = 0.
Easy matrix manipulations show that Raussnitz’s criterion [23], when expressed
in terms of the Sylvester matrix, is equivalent to the above.

5. Testing permutation polynomials. Let f € F,[z] have degree n. We want
to use Theorem 2 to test efficiently whether f is a permutation polynomial or not.
Computing the resultant as the determinant of the (g +n) x (g + n)-Sylvester matrix
would be very costly. We can, however, use the Euclidean algorithm to compute the
resultant as follows.

Let F' be any field, ag, a; € F[z] of degrees ng > ny > 0, respectively, and consider
the Euclidean scheme for (a¢,a;), consisting of the remainders ag, a1, a2, -+, q; € Fz]
and the quotients q;,---,¢q € F[z] in the Euclidean algorithmn for ay and a;, defined
by

(1) Gi—1 = gia; + a;+1 and dega;y; < dega;

for 1 < i < I, using a;41 = 0. This scheme always exists and is unique. (qq, ---,
Q, ;) is called the Euclidean representation of (ag,a;) (Knuth [17] and Strassen
[27]). Furthermore, let n; = dega;, d; = degg;, a; € F be the leading coefficient of
@, and 7; € F the leading coefficient of g;. The “fundamental theorem on polynomial
remainder sequences” says that if n; > 1, then res(ag,a1) = 0, and if n; = 0, then

(2) res(ag, a1) = (—1)%a]"" H gt
1<i<l
where 3 = 37, nini+1 (Collins [8] and Brown and Traub [6]).
Equation (1) implies that a;_y = ~;0; and n;_; = d; +n; for all i. It follows that

ai=ar [ %

255 <i

for 2 < i < 1. Substituting this into (2) and collecting powers of =;, we find

(3) res(ag,a1) = (—1)*afet™ H ,Y‘_—(n.-_1+n.-)7
2<i<l

if ng = 0.

Thus we could calculate our gs by executing the Euclidean algorithm for 29 —
and f —y in Fq(y)[z]. Again, this would be very inefficient since the first division
of 29 —z by f —y may already leave us with a remainder whose degree in y is very
large—about ¢/n. We circumvent this problem by substituting a random element
u € Fgm for y, using an appropriate extension Fym of F,.
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ALGORITHM TEST FOR PERMUTATION POLYNOMIAL.

Input: Coefficients of a monic polynomial f € Fq[z] of degree n, 2 < n < g, and con-
fidence parameter € > 0. [Intuitively, ¢ <« 1. Note that any linear polynomial
az + b with a # 0 is a permutation polynomial.]

Qutput: YES or NO.

1. Set m = 1+ [log,(2¢7)], and find an irreducible polynomial ¢ € Fg[2] of

degree m.
2. Choose (uniformly) a random element u € Fgm = Fg[2]/(¢).
3. Set ag = #? — x, a3 = f — u, and compute the coefficients of as =

(29 — z) rem (f — u) € Fgm[z]. This division with remainder is performed
by “repeated squaring” of z, reducing modulo f — u after each multiplication
step.

4. Compute the Euclidean representation (ga,--+,q,a) for (ay,az) in Fgm[z],
let d; = degg; and 7; € Fgm be the leading coefficient of ¢;, for 2 <i < . If
dega; > 1, return YES and stop.

5. Compute ng = q, ny = n, and ngy, -+ -,y from n; = n;—; — d;, and calculate
6. Compute

v=(-1)* J] %™+ = (~1)%u - u) € Fgm.
2<i<l

7. Return YES if v = 0, and NO otherwise. 2|

It is convenient to ignore logarithmic factors using the “soft O” notation, intro-
duced by von zur Gathen [11] and Babai, Luks, and Seress [2]:

g=07(h) < 3k g = O(h(log, h)¥).

THEOREM 3. The algorithm can be performed with m random choices in Fy, plus
the cost of finding an irreducible polynomial of degree m, and O(loggq - M(n)M(m))
arithmetic operations in Fq, where m = 1 + [log,(2¢7!)]. These are O™(nlogye™?)
operations in Fy if € < ¢~*. If f is a permutation polynomial, the output is YES. If
f is not a permutation polynomial, the output is NO with probability at least 1 — e.

Proof. Step 3 can be done in O(logg - M(n)) operations in Fym. The usual
algorithm for the Euclidean scheme calculates all quotients and remainders in O(n?)
arithmetic operations. However, the Euclidean representation (g, **,q,a;) can be
computed in only O(M(n) - logn) arithmetic operations by the Knuth-Schénhage
algorithm (see Aho, Hopcroft, and Ullman [1, §8.9] and Strassen [27]). Each e
can be calculated in O(logn) operations, and thus step 6 requires O(llogn + logq)
or O(nlogn + log q) operations in F,m. Since one operation in Fgm can be simulated
with O(M(m)) operations in F,, the total cost is O(logq- M(n)M(m)) operations in
F,. This is O"(nloge™!) if € < g7, since then log, g - [log,(2¢™1)] = O(logg e™?).

Set A; = f —y € Fg(y)[z]. Then hy = resy(ag, A;). Since a; = A;(u) € Fym[z]
has the same degree as A;, we have resz(ao,a1) = hy(u) and v = gs(u) in step 6. If
f is a permutation polynomial, then gy = 0 and v = 0. If f is not a permutation
polynomial, then g € Fy[y] is a nonzero polynomial of degree less then ¢, and v # 0
with probability more than 1 — g/¢™ > 1 —€¢/2.

If dega; > 1 in step 4, then f(v) = u for some v € F,, and thus u € Fy; the
probability of this happening is at most g/¢™ < €/2. O
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If we choose € polynomial in ¢~?, then the algorithm uses O"(n log ¢) operations.
Some Boolean operations occur in the algorithm, e.g., in the calculation of m, the n;,
and s; we have neglected the small cost of these.

We have not specified a method for finding an irreducible polynomial in step 1.
Rabin [22] gives a probabilistic algorithm for this problem, using O(kmM (m) logm
log ¢) operations in Fy, and returning successfully with probability at least 1 — m ™,
for any k. Choosing k = loge™! gives failure probability at most e for this step, and
cost O(log e™*mM (m)log mloggq), which is O (lognlog®e=?) if € < g~ .

We actually do not need ¢ of degree exactly m, but degree between m and 2m,
say, is sufficient. This may be useful if a table of irreducible polynomials is available,
or if a particular degree is preferable, say powers of 2. One could even take a random
¢ € Fy2] of degree m without linear factors (i.e., ged(2? — 2, ¢) = 1) and compute in
the “pretend-field” Fg[2]/(y); if a division by a zero-divisor turns up in the algorithm,
this gives a factorization ¢ = , -3, and one can continue in the two rings Fg[2]/(¢1)
and Fy[z]/(¢2). The algorithm would still work (by the Chinese Remainder Theorem),
but the analysis is slightly more complicated.

Yet another possibility would be to take ¢ of degree 2 if n < g/2 (or n is not too
close to g), and of degree 3 otherwise; run the algorithm with several random choices
Uy, -+, Uzk41 in Fge (respectively, Fs); and take a majority vote on the individual
outcomes. Each individual run has an error probability at most gn/q? (respectively,
qn/q®), and for k = logy €' (respectively, k = log,¢™1), the total error probability
is at most €. The cost of this implementation is O ((n + logg) loge™1) (respectively,
O (nloge™1)), plus the cost of finding .

Instead of studying polynomials inducing permutations on F,, Brawley, Carlitz,
and Levine [5] consider permutations of the matrix algebra F2%¢, and prove that f €

F,[z] is a permutation polynomial of ]Fg"d if and only if f is a permutation polynomial
of Fg,Fyz,+ -+, Fga, and the derivative f! does not have a root in Fq,Fg2,-++,Fyx, where
k= |df2].

COROLLARY 4. Let f € F,[z] have degree n, and 0 < € < g=%. There is a prob-
abilistic algorithm which determines whether f is a permutation polynomial on F&*
correctly with probability at least 1 —e. Apart from random choices and the finding of
certain irreducible polynomials, it uses O™ (dloge™(n/logg+d)), or O (d*nloge=1),
operations in Fg.

Proof. We simply implement the first of the Brawley, Carlitz, and Levine condi-
tions using the Algorithm Test for Permutation Polynomial, with

O((n+ jlogg)log,(n/e))

arithmetic operations in Fyy, for 1 < j < d, each costing O7(j) operations in F;. This
leads to the stated bound. The second condition

ged(z? ~z,f)=1 for1<j<k
can also be tested at this cost. O

6. A criterion for large polynomials. Let p € N, and recall the notion of
p-large from the introduction, and hy € Fy[y] from §4. Then we have:

fisplarge <= 3IPCF,(#P>q—-pandVue P weF, f(v)=u)
< 3JPCF,(#P2q—-pandVYueP JveF, z—v|f—u)
< 3JPCF,(#P>qg—pandVu€P ged(z? —z, [ —u) #1)
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3PCF, (#P>q—pand Vu € P hy(u) = 0)
IPCF, (#P>q—p and Yu € P y—u|hy)
deg(ged(y? —y,hy)) 2 q—p

deg((y? —y)/kg) < p

deg(hy/ky) < p,

where ky = ged(y? —y, hy) € Fyly]. Thus we have the following criterion for p-large
polynomials.

THEOREM 5. Let f € Fylz], and hy = resy(29—z, f —y) and ks = ged(y9—y, hy)
in Fyly]. Then f is p-large if and only if deg((y? — y)/kys) < p.

If f is p-large, then all but at most 2p elements u of F, have exactly one preimage
v under f; this unique v can be easily found from z — v = ged(z? — z, f — u).

IBREE

7. A test for large polynomials. Let ap = 27—z, 4, = f — y € Fy(y)[z],
and Qn,---,Qi, A; € Fy(y)[z] be the Euclidean representation of (ap, A1) (i.e., the
quotients and the gcd as calculated by the Euclidean algorithm). If u € Fgm, a; =
Ai(u) = f—u € Fym[z], and g1, - , g, ay is the Euclidean representation of (ag, a) in
Fym[z], thenl =1', ¢; = Q(u) for all i, and a; = Ay(u). In particular, deg ¢; = deg Q;.

The Euclidean algorithm for (ag, A1) requires, of course, tests for zero or branch-
ing, in order to determine the degree sequence (deg @y, - -,deg Q;,deg A;). However,
the computation using u gives us the correct degree sequence, and then all entries
of the Euclidean scheme are rational functions in the coefficients of ag and A;; the
subresultant theory provides explicit formulas. In fact, we obtain an arithmetic cir-
cuil (or straight-line program) for hy, i.e., a computation using only the coefficients
of f and the operations +, —, %, /. The size of an arithmetic circuit is the number of
arithmetic operations in it.

It is not clear how to calculate efficiently kf = ged(y? — y, hy), if we regard the
degree g of By = y? — y and By = hy as exponentially large. However, in

BB oV oy W o)k O
Y =iy hy/ks &

the two polynomials Cy = (y¢ — y)/k; and Cp = hy/ ks are relatively prime. We can
now call Kaltofen’s [15] Algorithm Rational Numerator and Denominator, to calculate
those two polynomials from the arithmetic circuits for hy (discussed above) and y?—y
(repeated squaring).

FacT 6 (Kaltofen [15]). Suppose an arithmetic circuit o of size s with one input y
over a field F' computes By = C1/Cy € F(y), with Cy,Cy € F[y] relatively prime, and
that u € F is such that no division by zero occurs in o on input y «— u. Then, given a
and u, and an integer p, one can compute (deterministically) with O(M (p)(s +log p))
arithmetic operations in F' an arithmetic circuit 8 of size O(M(p)(s +1logp)) over F
which computes two polynomials ¢, and ¢a in Fly] of degree at most p such that if
degC1,degCy < p, then ¢y = Cy and c3 = Cy. 3 has no divisions by zero on input
3

This is a special case of Kaltofen’s theorem 8.1 [15]. To derive it, we note that
we can replace Kaltofen’s “Step FT” with a; = u, and all the nasty possibilities that
complicate Kaltofen’s proof (for multivariate polynomials) vanish in our simple case.
In particular, this variant is deterministic, while in the general case, Kaltofen needs
probabilistic choice. Note that, if deg Cy > p or degCy > p, then By # ¢;/ce. (We
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ignore the Boolean cost of the procedure, and assume, also in the sequel, a reasonable
convention for p = 0 in the O-notation.)
The following algorithm results from the above discussion.

ALGORITHM TEST FOR POLYNOMIAL WITH LARGE IMAGE.
Input: Coefficients of a monic polynomial f € Fy[z] of degree n, 2 < n < ¢, some
p € N with 0 < p < ¢, and a confidence parameter € > 0.
Qutput: YES or NO.
i. Set n = 1 + [log,(3¢~")], and find an irreducible polynomial ¢ € Fy[z] of

degree m.
ii. Perform steps 2, 3, 4, and 5 of Algorithm Test for Permutation Polynomial.
iii. Compute by = (=1)° [Tpciq 2 ™7 *") € Fym, and by = w9 —u.

iv. Let A; = f —y € Fy(y)[z]. Consider the following arithmetic circuit o over
F, with one input y, working in five stages.
a. Compute Az = 2% — £ mod A;.
b. Compute the “Euclidean representation” (Qz,- - -, @i, Ar) for (A1, A3) in
F,(y)[z], using the degree sequence (dy, - - -,d;) computed in step ii.
c. Let I'; € Fy(y) be the leading coefficient of Q;, and compute

By = hf = (-1)° H F:(ﬂi—l‘l‘l’li) € qu[y].
2<i<l

d. Compute B, = y? — y, by repeated squaring.

e. Compute the output By = B;/Bs.
[Note that in this step we do not actually calculate By, but rather describe
an arithmetic circuit for By.]

v. Call Kaltofen’s Algorithm Rational Numerator and Denominator (Fact 6)
with input e and u, and degree bound p both for numerator and denominator.
The output is an arithmetic circuit 3 computing two polynomials ¢; and c3
in F,[y] of degree at most p. [If deg Cy < p, with Cy = By /ky as above, then
By =c1/ez ]

vi. Execute 3 with input u to calculate ¢;(u) and c;(u), and compute c3 =
by - cg(u) — by - e1(u). If ¢z = 0, then output YES; otherwise output NO.

THEOREM 7. The algorithm can be performed with m = 1+ [log,(3¢~')] random
choices in Fy, plus the cost of finding an irreducible polynomial of degree m, and

O(M(m)M(n)M(p)logq)

arithmetic operations in F,. These are O (nplogy ™) operations if e < g~ '. If f is
p-large, the output is YES. If f is not p-large, the output is NO with probability at
least 1 — €. 1

Proof. If n; > 1 in step ii, then ged(z? — z, f — u) # 1 and hence f(v) = u for
some v € Fg, and thus u € ;. This occurs with probability at most g/q™ < ¢€/3.

The subresultant theory (Brown and Traub [6]) guarantees that hy is correctly
computed in step iv.c, by (3). Recall By = B1/B; = C1/C,, with C1,C; € Fyly]
relatively prime, and let C3 = Cy - e3 — Ca - €1 € Fy[y]. If the correct output is YES,
so that deg Cy,deg Cy < p, then Fact 6 says that ¢; = C; and ¢z = Ca. Then C3 =0
and cg = C3(u) = 0, and the correct answer YES will be output.

If the correct output is NO, then we know that degC; and degCy are larger
than p. Step v will output two polynomials ¢; and ¢y of degree at most p, essentially
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unrelated to our problem. Now C3 € Fy[y] is nonzero of degree at most ¢ + p, and an
incorrect output in step vi implies that C'3(u) = 0, which happens with probability
at most (g + p)g~™ < 2¢/3 (Schwartz [25]). The total error probability is at most
€/3+2/3=e.

We assume the standard representation of elements of Fym by vectors in F sl
The number of random choices in Fy is m. Using n < g, one finds that the size s
of a is s = O(M(n)logg), and log p = O(s). The number of arithmetic operations
in Fg is O(sM(m)) in steps i through iii, negligible in step iv (which just sets up a
circuit), O(sM(p)) in step v, and O(sM(m)M(p)) in step vi. Thus the total number
of arithmetic operations in Fy is O(M(m)M (n)M(p)logg), which is O (nplog, e 1)
ey * B

For f € Fy[z], let p; = ¢— V/(f), so that f is ps-large and not (p; — 1)-large. By
a “binary search on p” one can compute ps with O"(npy log, €~!) operations correctly
with probability at least 1 —e.

8. Manipulating polynomials of large degree. A central ingredient of the
algorithms presented here are efficient computations (for special problems) with poly-
nomials of large (exponential) degree and small (polynomial-size) arithmetic circuits.
It remains open how to put this development into a more general framework. Sup-
pose we have two polynomials f and g (over a field, in many variables), given by
two arithmetic circuits of size s and ¢, respectively, and an integer p, not larger
than 2* and 2. Kaltofen’s methods can decide, e.g., whether deg f < p in ran-
dom polynomial time (ps)°(), If deg f = degyg is known, then the method given
above (namely, computing the reduced numerator and denominator of f/g) can de-
cide whether degged(f,g) > deg f — p in random polynomial time (pst)?(V); deg f
may be exponentially large.

In fact, this method only requires an estimate e > |deg f — degg|, and uses
time (pste)®(Y). As an application, suppose that char(F') = 0 and, for simplicity,
that f € Flz]. One can easily find a small arithmetic circuit for f' = f/dz; Baur
and Strassen [3] produce one of size at most 5s even in the multivariate case. Then
deg f' = deg f—1, and we can test in time (ps)°) whether deg ged(f, f') > deg f—p,
i.e., whether the squarefree part of f has degree at most p.

Here is a list of a few problems in manipulation of polynomials of exponentially
large degree that one would like to answer in time (pst)(1). For some, deg f might
be an additional input.

(1) Test whether deg f < p in time polynomial in log p.

(2) Does g divide f?

(3) Is f squarefree? Does the squarefree part of f have degree at least (deg f)—p?
(4) Isdegged(f,g) < p? (This is probably a difficult problem; Plaisted [21] shows

that the question “is ged(f, g) # 17" is NP-hard for f,g € Q[z].)

(5) Can one compute the Euclidean representation of (f,g) in time polynomial
in the input plus output size, say in the sparse representation? For this, it
seems sufficient to have a (probabilistic) polynomial-time test for

i3
deg f <d

(given f as above and the binary representation of d € N), due to the rational
nature of the Euclidean scheme for fixed degree sequence.

(6) Do some (or all) irreducible factors of f have degree at most p? Degree at
least (deg f) — p?



JOACHIM VON ZUR GATHEN 601

The positive results mentioned above easily carry over to the “black box” model;
Kaltofen and Trager [16] present the necessary (probabilistic) algorithms. For ques-
tions (2)—(6), one might start by considering the sparse representation of f.
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