VALUES OF POLYNOMIALS
OVER FINITE FIELDS

JOACHIM VON ZUR GATHEN

Let \(q \) be a prime power, \(\mathbb{F}_q \) a field with \(q \) elements, \(f \in \mathbb{F}_q[x] \) a polynomial of degree \(n \geq 1 \), \(V(f) = \#f(\mathbb{F}_q) \) the number of different values \(f(a) \) of \(f \), with \(a \in \mathbb{F}_q \), and \(\rho = q - V(f) \). It is shown that either \(\rho = 0 \) or \(4n^4 > q \) or \(2pm > q \). Hence, if \(q \) is "large" and \(f \) is not a permutation polynomial, then either \(n \) or \(\rho \) is "large".

Possible cryptographic applications have recently rekindled interest in permutation polynomials, for which \(\rho = 0 \) in the notation of the abstract (see Lidl and Mullen [10]). There is a probabilistic test for permutation polynomials using an essentially linear (in the input size \(n \log q \)) number of operations in \(\mathbb{F}_q \) (von zur Gathen [5]). There are rather few permutation polynomials: a random polynomial in \(\mathbb{F}_q[x] \) of degree less than \(q \) is a permutation polynomial with probability \(q^d/q^4 \), or about \(e^{-d} \). For cryptographic applications, we think of \(q \) as being exponential, about \(2^N \), in some input size parameter \(N \); then this probability is doubly exponentially small: \(e^{-2^N} \).

In the hope of enlarging the pool of suitable polynomials, one can relax the notion of "permutation polynomial" by allowing a few, say polynomially many in \(N \), values of \(\mathbb{F}_q \) not to be images of \(f : \rho = N^{O(1)} \). There is a probabilistic test for this property, whose expected number of operations is essentially linear in \(n \rho \log q \) (von zur Gathen [5]). The purpose of this note is to show that this relaxation does not include new examples with \(q \) large and \(n, \rho \) small: if \(\rho \neq 0 \), then either \(+4n^4 > q \) or \(2pm > q \) (Corollary 2 (ii)).

The theorem below provides quantitative versions of results of Williams [15], Wan [14], and others, which we now first state. As an application, we will show that a naïve probabilistic polynomial-time test for permutation polynomials has a good chance of success; this could not be concluded from the previous less quantitative versions.

If \(p = \text{char} \mathbb{F}_q \), then \(a \mapsto a^p \) is a bijection of \(\mathbb{F}_q \). If \(f = g(x^p) \) for some \(g \in \mathbb{F}_q[x] \), then \(V(f) = V(g) \), and, in particular, \(f \) is a permutation polynomial if and only if \(g \)
is. Replacing \(f \) by \(g \) (and repeating this process if necessary) we may therefore assume that \(f \) is not a \(p \)th power, that is, that \(f' \neq 0 \). Then \(f \) is called \emph{separable}. We consider the difference polynomial

\[f^* = \frac{f(x) - f(y)}{x - y} \in \mathbb{F}_q[x, y], \]

and the number \(\sigma \) of absolutely irreducible (that is, irreducible over an algebraic closure of \(\mathbb{F}_q \)) factors in a complete factorisation of \(f^* \) into irreducible factors in \(\mathbb{F}_q[x, y] \). We call \(f \) \emph{exceptional} if \(\sigma = 0 \). Any linear \(f \) is exceptional.

\textbf{FACTS.} Let \(f \in \mathbb{F}_q[x] \) be separable of degree \(n \).

(i) (MacCluer [12], Williams [16], Gwehenberger [7], Cohen [3]). If \(f \) is exceptional, then \(f \) is a permutation polynomial.

(ii) (Davenport and Lewis [4], Bombieri and Davenport [2], Tietäväinen [13], Hayes [8], Wan [14]). There exist \(c_1, c_2, \ldots \) such that for any separable \(f \in \mathbb{F}_q[x] \) of degree \(n \) we have: If \(q \geq c_n \) and \(f \) is a permutation polynomial, then \(f \) is exceptional (hence, by (i), a permutation polynomial).

(iii) (Williams [16]) If \(q \) is a fixed prime, large compared with \(n \), say \(q \geq q_0(n) \), and \(\rho = O(1) \) (that is, \(\rho \) depends only on \(n \), but not on \(q \)), then \(f \) is exceptional (hence, by (i), a permutation polynomial).

(iv) (von zur Gathen and Kaltofen [6], and Kaltofen [9]) There is a probabilistic test whether \(f \) is exceptional using a number of operations in \(\mathbb{F}_q \) that is polynomial in \(n \log q \).

We will establish quantitative versions of Facts (ii) and (iii). The proof follows the lines of Williams' argument; a central ingredient is, as in Williams' and Wan's work, Weil's theorem on the number of rational points of an algebraic curve over a finite field.

\textbf{Theorem 1.} Let \(n \geq 1, f \in \mathbb{F}_q[x] \) separable of degree \(n \), \(V(f) \) the number of values of \(f \), \(\rho = q - V(f) \), and \(0 < \varepsilon \leq 8 \).

(i) If \(q \geq n^4 \) and \(f \) is a permutation polynomial, then \(f \) is exceptional.

(ii) If \(q \geq e^{-2}n^6 \) and \(\sigma \) is the number of absolutely irreducible factors of \(f^* \) in \(\mathbb{F}_q[x, y] \), then \(\rho > (\sigma - \varepsilon)q/n \).

\textbf{Proof:} Since any linear polynomial is a permutation polynomial and exceptional (that is, \(\sigma = 0 \)), we may assume that \(n \geq 2 \). For \(1 \leq i \leq n \), let

\[R_i = \{ a \in \mathbb{F}_q : \#(f^{-1}(\{a\})) = i \} \]

be the set of points with exactly \(i \) preimages under \(f \), and \(r_i = \#R_i \). Then \(\bigcup_{1 \leq i \leq n} R_i = \)
$f(\mathbb{F}_q)$ is a partition, and

\[
\sum_{1 \leq i \leq n} r_i = q - \rho,
\]

\[
\sum_{1 \leq i \leq n} ir_i = q.
\]

Subtracting (1) from (2), we find

\[
\sum_{2 \leq i \leq n} (i - 1)r_i = \rho.
\]

Let

\[S = \{(a, b) \in \mathbb{F}_q^2 : a \neq b, f(a) = f(b)\},\]

and $s = \#S$. We map every $(a, b) \in S$ to $c = f(a) \in \bigcup\limits_{2 \leq i \leq n} R_i$; every $c \in R_i$ with $i \geq 2$ has exactly $i(i - 1)$ preimages under this map. Together with (3), this shows that

\[
\sum_{2 \leq i \leq n} i(i - 1)r_i = s.
\]

We may assume that f is not exceptional, and it is sufficient to prove $\rho > 0$ if $q \geq n^4$ for (i), and $rn > (\sigma - \epsilon)q$ if $q \geq e^{-2}n^4$ for (ii). We write $f^* = h_1 \cdots h_{\sigma - 1} h_{\sigma + 1} \cdots h_r$, with $h_1, \ldots, h_r \in \mathbb{F}_q[x, y]$ irreducible, and h_i absolutely irreducible if and only if $i \leq \sigma$. We have $\sigma \geq 1$.

Let K be an algebraic closure of \mathbb{F}_q, and for $1 \leq i \leq \tau$ let

\[X_i = \{(a, b) \in K^2 : h_i(a, b) = 0\}\]

be the curve defined by h_i, $X = \bigcup\limits_{1 \leq i \leq \tau} X_i$ its rational points, $n_i = \deg h_i$, and $X = \bigcup\limits_{1 \leq i \leq \tau} X_i$. We observe that $f(x) - f(y)$ is squarefree, since for a factor h^2 one finds, by differentiating, that h divides $\gcd(f'(x), f'(y)) = 1$. In particular, $x - y$ does not divide f^*, and if $\Delta \subseteq K^2$ is the diagonal, then $X_i \neq \Delta$ for all i. Then

\[n - 1 = \deg f^* \cdot \deg \Delta \geq \#(X \cap \Delta) \geq \#(X \cap \Delta),\]

by Bezout's theorem. Similarly,

\[n_i n_j \geq \#(X_i \cap X_j) \geq \#(X_i \cap X_j)\]
for $1 \leq i < j \leq \tau$. Furthermore, by Weil's Theorem (see Lidl and Niederreiter [11, p.331]) we have

$$\#X_i \geq q + 1 - \left((n_i - 1)(n_i - 2)q^{1/2} + n_i^2 \right)$$

for $1 \leq i \leq \sigma$. Together, we obtain

$$\#X \geq \# \bigcup_{1 \leq i \leq \sigma} X_i \geq \sum_{1 \leq i \leq \sigma} \#X_i - \sum_{1 \leq i < j \leq \sigma} \#(X_i \cap X_j)$$

$$> \sigma q - \sum_{1 \leq i \leq \sigma} \left((n_i - 1)(n_i - 2)q^{1/2} + n_i^2 \right) - \sum_{1 \leq i < j \leq \sigma} n_in_j.$$

The maximum value of $\sum_{1 \leq i \leq \sigma} (n_i - 1)(n_i - 2)$ with $\sum_{1 \leq i \leq \sigma} n_i \leq n - 1$ and $1 \leq n_1, \ldots, n_\sigma$ is achieved at $(n_1, \ldots, n_\sigma) = (n - \sigma, 1, \ldots, 1)$, where it equals $(n - \sigma - 1)(n - \sigma - 2) \leq (n - 2)(n - 3)$. Adding the terms n_i^2 into the last sum, we find again that $\sum_{1 \leq i < j \leq \sigma} n_in_j$ reaches, under the given conditions, its maximum at the same (n_1, \ldots, n_σ). Its value there is $(n - \sigma)^2 + (\sigma - 1)(n - \sigma) + (\sigma - 1)\sigma/2$. This function achieves its maximum $(n - 1)^2$ at $\sigma = 1$.

Since $X \setminus (X \cap \Delta) \subseteq S$, we have from these estimates and (4), (5), and (6)

$$n\rho \geq \#X - (n - 1)$$

$$> \sigma q - (n - 2)(n - 3)q^{1/2} - (n - 1)^2 - (n - 1).$$

To prove (i), it is sufficient to have the right hand side of (7) nonnegative. This is clearly the case for $n \leq q^{1/4}$, since $\sigma \geq 1$. To prove (ii), we note that

$$0 \geq u(-5\sqrt{e}u^2 + (6 + \epsilon)u - \sqrt{e})$$

for $u \geq \delta = \frac{6 + \epsilon + \sqrt{36 - 8\epsilon + \epsilon^2}}{10\sqrt{\epsilon}}$.

Using this for $u = q^{1/4}$, assuming $q \geq \epsilon^{-2}n^4$ (which implies $u \geq 2\epsilon^{-1/2} \geq \delta$), and using (7), we have

$$n\rho \geq \sigma q - \left((n - 2)(n - 3)q^{1/2} + n(n - 1) \right)$$

$$\geq \sigma q - \left(\epsilon q + \left(-5\sqrt{\epsilon}q^{3/4} + 6\epsilon q^{1/2} + \epsilon q^{1/2} - \sqrt{\epsilon}q^{1/4} \right) \right)$$

$$\geq (\sigma - \epsilon)q.$$

\[\square\]

Corollary 2. Let $n \geq 1$, $f \in \mathbb{F}_q[x]$ separable of degree n, $V(f)$ the number of values of f, $\rho = q - V(f)$, and assume that $q \geq 4n^4$.

(i) If σ is the number of absolutely irreducible factors of f^* in $\mathbb{F}_q[x, y]$, then $\rho \geq (\sigma - 1/2)q/n$.

(ii) If $\rho \leq q/2n$, then f is a permutation polynomial.
PROOF: (i) Set $\epsilon = 1/2$ in (ii) of the Theorem. (ii) If f is not a permutation polynomial, then it is not exceptional (Fact (i)); hence $\sigma \geq 1$ and $\rho > q/2n$ by (i).

In various statements (the numbering of which is indicated below) of Lidl and Niederreiter [11], we can replace "there exist c_1, c_2, \ldots such that for all $q \geq c_n$" by "for all $q \geq n^4$"; we refer to their text for a complete bibliography.

COROLLARY 3. Let $n \in \mathbb{N}$, $n \geq 1$, \mathbb{F}_q a finite field with q elements, and assume $q \geq n^4$.

(i) (Corollary 7.30) Suppose that $f \in \mathbb{F}_q[x]$ is separable of degree n. Then f is a permutation polynomial if and only if f is exceptional.

(ii) (Theorem 7.31) Suppose that $\gcd(n, q) = 1$ and \mathbb{F}_q contains an nth root of unity, different from 1. Then there is no permutation polynomial of \mathbb{F}_q with degree n.

(iii) (Corollary 7.32) Suppose that n is positive and even, and $\gcd(n, q) = 1$. Then there is no permutation polynomial of \mathbb{F}_q with degree n.

(iv) (Corollary 7.33) Suppose that $\gcd(n, q) = 1$. Then there exists a permutation polynomial of \mathbb{F}_q with degree n if and only if $\gcd(n, q - 1) = 1$.

We obtain a probabilistic polynomial-time algorithm to test whether a given polynomial $f \in \mathbb{F}_q[x]$ of degree n is a permutation polynomial, as follows. We first note that any $u \in \mathbb{F}_q$ has exactly one preimage under f (that is, $\#f^{-1}(\{u\}) = 1$) if and only if $\gcd(x^n - x, f - u)$ is linear. Calculating $x^n - x \mod f - u$ by repeated squaring takes $O^\ast(n \log q)$ operations, and the gcd calculation then $O^\ast(n)$ operations in \mathbb{F}_q (Aho, Hopcroft and Ullman [1, Section 8.9]). (The "soft O" notation $O^\ast(m)$ means $O(m \log^k m)$ for some fixed k, thus ignoring factors $\log m$.) If $q < 4n^4$, we test for each $u \in \mathbb{F}_q$ whether it has one (or at least one) preimage under f. This costs $O^\ast(n^2 q)$ or $O^\ast(n^3)$ operations in \mathbb{F}_q.

If $q \geq 4n^4$, we have the following probabilistic algorithm, with a confidence parameter $\epsilon > 0$ as further input. We choose $k = \lceil 2n \log_q \frac{1}{\epsilon} \rceil$ elements $u \in \mathbb{F}_q$ independently at random, and test whether u has exactly one preimage under f. If this is not the case for some u, then f is not a permutation polynomial. If it is true for all u tested, then we declare f to be a permutation polynomial. It may of course happen that f is not a permutation polynomial and this test answers incorrectly; the probability of this event is at most

$$
\left(\frac{q - \rho}{q} \right)^k < \left(\frac{q - q/2n}{q} \right)^{2n\log q} \leq \epsilon,
$$

by Corollary 2 (ii). The cost is $k \gcd$'s or $O^\ast(n \log \frac{1}{\epsilon} \cdot n \log q)$ operations in \mathbb{F}_q.

This test is conceptually much simpler than the one in von zur Gathen [5]; however, that test is more efficient, using only $O^\ast(n \log \frac{1}{\epsilon})$ operations (if $\epsilon \leq q^{-1}$).
REFERENCES

Department of Computer Science
University of Toronto
Toronto, Ontario M5S 1A4
Canada