JOACHIM VON ZUR GATHEN (1992). Processor-efficient exponentiation in finite fields. Information Processing Letters 41, 81-86. URL

In%ormatinn Processing Letters 41 (1992) 81-86
Nerth IHolland

xpli
9.)

in finite fields

Joachim Von Zur Gathen

Communicated by T. Lengauer
Received 24 Tune 1991
Revised 23 Qctober 1991

Abstract

normal basis over the ground field is given.

thstanding that ~ ing any of these documents will adhere to the terms and constraints invoked by poses. These works may not be posted elsewhere without the ex]

ndetstood tha¥M¥persons copy- each copyright holder, and in particular use them only for noncommercial pur- mission of the copyright holder. (Last update 2016/05/18-14 1

(=]

ntroductlon

[
ofwit

this paper, we study the number of proces-
used for parallel exponentiation in finite
s. This problem is important in some crypto-
hic applications.
et us first describe the problem. We consider
¥gonentiation in a finite ficld F» with g" ele-
its, where ¢ is a prime power and n > 1.
pose that (B,,..., B, ,) is a normal basis of
er a field F with ¢ elements, so that
for all .. An arbitrary element a of Fyn
c uniquely written as @ = L, _, _ ,a,B; eF
ay,...,4, €k, Foranyje€N, we have

Z aiﬁi-!—j‘ .

O<i<n

yright holders, n

Zﬁﬂ—g9ﬂ(9‘ﬁ) 902%9 .w
0] airffainedd¥ the author by Other
m:gry. @ewﬁsa s‘erure%mzﬁa_uyﬁisu
I= g

16
L

gna A rightf

n

Z at”gfﬂ =

Ugi<n

cly dissernin:
pyrig]

refine
s. Coj
[I

Commercial basis,
o

gi.org#10.%¥0

a-means (o ensure

index arithmetic modulo n. Thus taking gth
ers amounts to a cyclic shift of coordinates.

tis provided as
work on @on

rt of this work was done while the author was a Visiting
llow at the Computer Sciences Laboratory, Australian
National University, Canberra, Australia, and partly sup-
ported by Natural Sciences and Engineering Research
Council of Canada, grant A2514.

s_l_iiul:g

i
d

https//dxgd

14 February 1992

Processor-efficient exponentiation

Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 144

Von Zur Gathen, I., Processor-efficient exponentiation in finite fields, Information Processing Letters 41 (1992) 81-86.

The processor-efficiency of parallel algorithms for exponentiation in a finite field extension is studied, assuming that a

Keywords: Design of algorithms, parallel algorithms, finite field arithmetic, cryptography

This may be much less expensive than a general
multiplication.

A basic assumption for our algorithms is that
computing qth powers is for free. This assumption
is used in the literature for g =2 [1,3,6,9]. Nor-
mal bascs arc casy to find (see [8] and the litera-
ture given there).

Section 2 presents the basic algorithm that we
will use. It works in size (=total number of
multiplications) and width (= number of proces-
sors) about n/log,n and depth (= parallel time
= delay) about log,n. Section 3 analyses the width
of the algorithm, shows how it can sometimes be
reduced by appropriate load-balancing, and gives
some numerical values. In Section 4, the algo-
rithm is discussed under the assumption that only
few processors are available,

2. Multiplication and free powers

The algorithms we will consider only use mul-
tiplication and gth powers; the latter are as-
sumed to have zero cost. It is convenient to think
of such an algorithm as a directed acyclic graph,

0020-0190 /92 /$05.00 © 1992 — Elsevier Science Publishers B.V. All rights reserved 81

Volume 41, Number 2

or arithmetic circuit. Three measures are of inter-
est: The depth (= parallel time) is the maximal
length (= number of multiplication gates) of paths
in such a circuit, and the size (= total work) is the
number of multiplication gates. We can stratify
the circuit into levels, with input and constant
gates at level zero, and any other gate at a higher
level than any of its two inputs, Then the width
(= number of processors) of a circuit is the maxi-
mal number of gates at any level. Trivially, we
have

width < size < depth - width. (2.1)

We want to compute x¢ € [Fq"[x]. Since a9" =a
for all a €[Fqn, by Fermat's Little Theorem, we
may assume that our exponent e satisfies) < e <
q". We take the g-ary representation of e

e=) eq with0<ge,,...

Ugi<n

P Tt 7 L

Then x¢ can obviously be computed as fol-
lows.

Algorithm 1

1. For 2 €j < g, compute x’. _
2. For 1 <i<n, compute y, =(x“)7.
3. Compute the product x*=T1,_,..,v.

This algorithm uses depth & + [log,n], width
max{2°72, g —1-2%"1 |n/2]}, and size g +n —
3, where 8 = [log,(g — 1I.

The idea of the next algorithm is that short
patterns might occur repeatedly in the g-ary rep-
resentation of e, and that precomputation of all
such patterns might lower the overall cost. This
idea is uscful for “addition chains” (see [4, 4.6.3],
and the references given there) and for “word
chains” [2], and has been applied to our cxponen-
tiation problem in characteristic two.by Agnew et
al. [1] and Stinson [6].

We choose some pattern length r = 1, set 5 =
[n/r], and write e =X, _, . . b,q" with0<b, < q"
for all i.

Algorithm 2

1. For 2 <d <gq, compute x9.
2. For g <d <q’, compute x¥.

82

INFORMATION PROCESSING LETTERS

14 February 1992

3. For 0 <i<s, compute y, = (x")?"
4. Return x“=1lg ;. ¥,

Step 1 takes depth & =[log,(g — 1)]. We im-
plement step 2 in [log,r] stages 1,...,[log,r]| as
follows. For any d € N with g-ary representation
d=Yd.q', let

w(d) = #{i: d, + 0) (22)

be the g-ary Hamming weight of d. In stage i, we
compute all x¢ (not previously computed) with
g<d<gq’, d#0 mod g, and w(d)<?2'. Each
new d in stage i is of the form d = d, + q’d,, for
some j>1 and d,,d, computed before stage i.
Then

x8=yd. (xdz)q;_‘

and each stage 1,...,[log,7] can be performed in
depth 1.

After the last stage, we have all required pow-
ers for d # 0 mod g; the ones with d =0 mod g
can be computed free of charge. There are ex-
actly ¢" —q"~' — 1 integers d with 2 <d <g" and
d #0 mod g. Since cach multiplication yields a
new x?, the total size for steps 1 and 2 is (g —
1)g"~! — 1. This also bounds the width.

Step 3 is free, and we can use a binary multi-
plication tree in step 4. Together we obtain depth

[log,(q — 1)] + [log,r] + [log,s],

width max({(q — 1)g" "' =1, [s/2]}, and size (g —
Dg™ ' +s-2.

In the sequel, we study the width in more
detail. For sufficiently large n, the choice

r=|log,n =2 log,log,n|

leads to width less than
n

2log n

q

(1+ (10 log, log,n + 6) /log,n)

and size at most twice that bound. This size is
optimal up to a factor of three [4], and no smaller
size is known; these facts will not be used.

Volume 41, Number 2
3. Balancing the last two stages

We want to examine the width of Algorithm 2
in more detail. For a,b,q,r €N, define

¥ (rzl)(q—l)“'.

a<k<h

‘dq.r(a Ll b) =

Then we have

A,.(a,b)=), A, (c,c+1),
a<c<b (3.1)

4,.0,r)y=(g-1)gq".

There are A, ,(a, b) many d with 1<d <q’,
d #0 mod g, a <w(d) <b. This is casily verified
for b =a + 1, and follows in general from (3.1).

For 1 <u <A =[log,r], the width at stage u
of step 2is 4,,(2* ", 2*). We first show that the
maximum occurs for 4 =A — 1. We have 2* 7?2 <
(r—1)/2 <2*~! and thus the middle term m =
[(r —1)/2] of the binomial expansion (3.1) con-
tributes to 4,,(2* 72, 2*~") unless r=2* Thus
the k with 2* =% <k <2*~? can be matched bi-
jectively with an interval in [2* 72, 247! — 1] start-
ing or ending with m, and therefore

dq.r(zA—era—'z) gdq,r(za 21 2)\ 1).

(This also holds when r = 2*.) More generally, we
have

A (2P0l (B 2 Yy

for 1 < u < A. Thus the maximal width in step 2
of Algorithm 2 occurs at stage A — 1 or A, and the
total width in the algorithm is in fact equal to

max{4,,(2*72,2*7"), 4,,(2*7", r), [s/2]}.

(32)

Table 1
g =3, n=1000

depth width size r s
Algorithm 1 11 300 1000
Algorithm 2 11 167 350 3 334

10 125 302 4 250

11 143 360 5 200

INFORMATION PROCESSING LETTERS

14 February 1992

Table 2
g=2, n=593
depth width size o 8
Stinson [6) 10 49
Algorithm 1 10 296 592
Algorithm 2 with (3.2) 10 49 129 611199
10 42 147 7 85
10 64 200 8 75

Tables 1, 2, 3, and 4 present a few examples,
with small g. The field considered in Table 2 is
used in a commercial cryptosystem [5).

We describe how one can reduce the width in
step 2 of Algorithm 2 in some cases, while main-
taining the depth. We only consider g =2, al-
though the approach will work in general. If
r=2* where A = [log,r] is the number of stages,
we propose no reduction. In an extreme case,
however, r might equal 2*~'" + 1, and only very
little work would be done at the last stage of step
1. As an example, consider g =2, n = 2048, r = 10
as in the second to last line of Table 4. The work
at stages 1, 2, 3, 4 of step 2 of the algorithm is 9,
120, 372, 10 multiplications, respectively. We can
reduce the width to (372 + 10)/2 =191 by dis-
tributing the work of the last two stages evenly
between them.

In general, we do the following. Let

D={d:2<d<2",d=1mod 2}

be the set of all exponents d for which x“ has to
be computed in step 2. Thus #D =2""! — 1.

We assume A = 3. Up to and including stage
A—2,1t,=4,,(1,2*"?) of the d € D have been
dealt with. Since we cannot more than double the

Table 3
qg=2, n=1013
dcptfl width size r s
Algorithm 1 10 500 1012
Algorithm 2 with (3.2) 11 84 199 6 169
11 73 207 7 145
10 64 253 8 127
11 162 367, 4 5. 0113
Theorem 3.1 11 82 2L E B

83

Volume 41, Number 2

INFORMATION PROCESSING LETTERS

Table 4

=2, n=2048
depth width size r s

Stinson [6] 11 225

Algorithm 1 11 1024 2047

Algorithm 2 with (3.2) 12 146 35351 i ide3
11 128 382 8 256
11 162 482 9 228
11 372 715 10 205

Theorem 3.1 11 114 482 9 228
11 191 715 10 205

weight in one step, at most m, =4, (2* 2 24 1)
d’s can be finished at stage A — 1. This is done in
Algorithm 2 of Section 2, and is the best we can
do if r=2* However, in some cases we can
balance the work better by dealing only with the

ty =min{m,, 2" %= |t,/2] - 1}

many new d € D of smallest weight at stage A — 1.,
Then at stage A only

fe=2r b= g,
=max(2"1 ~1 —m, — £, 2" 2= [1,/2]]

operations have to be performed.

Theorem 3.1. Let g=2, O0se<2", rz5, s=
[n/rl, and t, as above. The algorithm given above
computes x° in depth [log,r|+ [log,sl, width
max{t,, |s/2]}, and size 2" ' + 5 = 2.

Proof. Stage A — 1 can be performed in depth 1
since ¢, < m,. To prove the same for stage A, we
have to check that every d € D with w(d) < [r/2]
is dealt with up to stage A —1. Let m, =
A, 242 [r/2D. 1t is sufficient to show m, <1,.
This is clear if £, =m,, since r/2 <2* 7L If 1, #
m,, we find from the binomial expansion of 27"

2,4+ 2m,=2-4, (1, [r/2]) <27,
m, <277 —t, <t

The depth claimed in the thcorem now follows.
Stage A — 2 uses width my=4, (2473, 2472)
<m,/2, and each previous stage uses smaller

84

14 February 1992

width. Since
420 - 5/2] -1 272 = [1:/2) = 15
my+ 1sm, +4, (2, r)
=my+ (2" =1-t,—m,)
=to+ 1, < 2t,,
my<m,/2 <t,,

the claimed bound on the width follows. O

As a further example, consider the second last
line (r=29) of Table 3. Stage 3 performs 162
multiplications, and stage 4 only 1. The balancing
reduces the width to 82.

4. Using few processors

There exist standard rescheduling techniques
for using the type of algorithm discussed here
with fewer processors than the stated width, by
distributing the computations of one “level” onto
scveral levels, thus increasing the depth and re-
ducing the width (see, e.g., [6]).

If we have w processors available, we can
calculate the product of s factors as follows. In
each of d =|s/w|—1 stages, w pairs of factors
(from the given s ones or from previous stages)
are multiplied together. (We use d =0 if s <w.)
This leaves s —dw < 2w factors, which are then
multiplied along a binary tree, of depth [log,(s —
dw)]. The total depth is d + [log,(s — dw)]. For
our standard example g =2, n =593, this yields

Table 5

Using few processors

depth width size ® 7 i
66 2 129 6 99
75 2 147 7 85
34 4 6

39 4 7

20 8 6

21 8 7

13 16 6

14 16 7

11 32 6

10 32 7

* The sizec and s depend only on r.

Volume 41, Number 2

the depths in Table 5 for widths which are a
power of two. Again, this compares favorably
with Stinson’s [6] estimates of depth 77, 29, 15,
and 11 for width 4, 8, 16, and 32, respectively.

In fact, this depth is optimal. To see this,
consider a computation of x, -+ x, in width w
and depth 8. We may assume s = 2w, since oth-
crwise d =0 and the binary tree of depth [log,s]
is optimal. Since the fan-in is two and there is a
single output node, one sees by induction on
that there are at most 2° multiplications at depth
8 —i, for 0 <i<m = [log,w]. Thus on the last m
levels a total of at most ¥, _;.,,2' =2" ~ 1 mul-
tiplications is performed. At most w can be done
on any single level, and a total of at least s — 1 is
required. Thus

s—1—(2"-1
5‘;—m+[¥‘
HJ’

Set u =[(s = 2™)/w] and ¢=[log,(s — dw)], with
d=|s/w]— 1. It is sufficient to show that

m+uz=i+d,.

Since w<s—dw<2w, we have m</f<m + 1.
We distinguish three cases.

If w divides s, then d=s/w—1 and ¢=m.
Since —2"/w > —2, we have

i 2!?!

s s
——1 =2m+—=1=¢/4+d.
w

mtu=m-+ —
W

L

It w does not divide s and #=m, then

o[S22

If #/=m+ 1, then

§—2m S_z.f—l S___zlugz(a—d‘w}
= -3 =d,
W w W

uz=d+1.

This proves that the depth is indeed optimal.

‘It is sometimes the case that faster algorithms
have a higher overhead. This is not the case in
steps 3 and 4 of Algorithm 2, which have the
same regular structure as the simple Algorithm 1.
(We remark that, skipping step 3, the multiplica-
tion tree in step 4 may be arranged so that at

INFORMATION PROCESSING LETTERS

14 February 1992

level i only g2th powers are used, for 1<i<
log,s.) Steps 1 and 2 are somewhat more compli-
cated, but independent of the exponent e. If
arithmetic in one fixed field extension is required,
these steps can be pre-programmed, in software
or maybe even in hardware.

Following a proposal by Agnew et al. [1] (for
g =2) we might arrange steps 3 and 4 of Algo-
rithm 2 according to

7 C(2 q"")_.

O<Lesq” ‘i€l

e= Y bgq'=

O<gi<s

where I ={i:0<i<s, b,=c}. Let m,= #I,.
This version leads to depth

d= max [log,m,.]+ [log,q"],

Oege<y”
width
w=max{[q’/2j, Y [mL./ZJ},
O<e<q’

and size s — 1. We have

log,s < d < log,s +r log,q,
s q s
P
2 2 2

If each m_ is about s/q', this yields slightly
smaller width without increasing the depth. In
general, we cannot expect the m_’s to be of equal
size, and then the increase in depth can be more
advantageously used to reduce the width by the
balancing technique as in Table 5.

References

[1] G.B. Agnew, R.C. Mullin and S.A. Vanstone, Fast expo-
nentiation in GF(2"), in: C.G. Gunther, ed., Advances in
Cryptology — EUROCRYPT'88, Lecture Notes in Com-
puter Science 330 (Springer, Berlin, 1988) 251-255,

[2] J. Berstel and S. Brlek, On the length of word chains,
Inform. Process. Letr. 26 (1987) 23-28,

[3] T. Beth, B.M. Cook and D. Gollmann, Architectures for
exponentiation in GF(27), in: AM. Qdlyzko, ed., Ad-
vances i Cryptology — CRYPTO'86, Lecture Notes in
Computer Science 263 (Springer, Berlin, 1986) 302-310.

85

86

Volume 41, Number 2 INFORMATION PROCESSING LETTERS 14 February 1992

[4] D.E. Knuth, The Art of Computer Programming, Vol.2,
Seminumerical Algorithms (Addison-Wesley, Reading, MA,
2nd ed., 1981).

[5] Newbridge Microsystems, CA34C168 Data Encryption
Processor, 1989.

fields, in: Proc. 32nd Ann. IEEE Symp. on Foundations of
Computer Science, San Juan, PR, 1991,

[8] J. Von Zur Gathen and M. Giesbrecht, Constructing nor-
mal bases in finite ficlds, J. Symbolic Comput. 10 (1990)

547-570.
[6] D.R. Stinson, Somc observations on parallel algorithms [9] C.C. Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K.
for fast exponentiation in GF(2"), SIAM J. Comput. 19 Omura and LS. Reed, VLSI architectures for computing
(1990) 711-717.

multiplications and inverses in GF(2™), [EEE Trans.

[7] J. Von Zur Gathen, Efficient exponentiation in finite Comput. 34 (1985) 709-717.

