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A natural model of algebraic computam@n (for polynomials over a field,
say) is the arithmeltic circuit, using the a.nt.}mqg;tlc operations +, —, , /. Sec-
tions 13.2 and 13.3 give some easy parallel agﬁnthms, and Section 13 4 deals
with the first fundamental problem: how to %bﬁve systems of linear equations
fast in parallel (and: how to compute the duﬁ.egmmant or characteristic poly-
nomial of a matrix). As usual in this volmrﬁé,E “fast paralle]” means parallel
time (logn)2() (in fact, O(log® n) for our gxﬁ{jblcms) and n°M) processors,
where n is the input size.

Section 13.5 introduces the |mportaié tool of reductions within our
framework. This allows us to consider the "réf&twe difficulty” of one problem
with respect to another, without requiring :};igc knowledge of the “absolute
difficulty” of these problems. “g

i ny

Section 13.6 gives the second fundaméﬁ al algorithm: computing the
rank of a matrix. With this machinery, tagg elementary problems of lin-
ear algebra can be classified into very fcw:gﬁoups with the same parallel
complexity within each group (although we §3 1y not know what exactly this
complexity is).

In Section 13.8, the model is exteud =l.o include tests for zero and
selection; this is necessary in order to deal w;@ sroblems like general (possibly
singular) systems of linear equations, or thcoﬁank of matrices. Furthermore,
the parallel complezity classes NC}. and SA?,@ are introduced, analogous to
the Boolean complexity classes NC* and SAI?E

The pervasion of the theoretical tool @Ieducuons gives the following
hint for the design of parallel computers: ulggafemcnt one of the problems in
dedicated hard/software, and then use suhr@glime calls to this one problem
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to solve all others.
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The last section mentions several other Rggms in parallel arithmetic com-
plexity which cannot be discussed in detail h;!ré the exponentiation problem
in finite fields, which shows that for certain é&sks our aritlunetic circuits are
not the right model, the surprising fact t.hag; “NC? = P” for polynomial
computations, optimal algorithms for dwxswnﬁmth remainder of polynomials,
computing normal forms of matrices, general lower bounds in terms of the
degree, and permutation group algorithms.

The theory of parallel algebraic computation as presented here is a
younger cousin of the more classical sequential algebraic complexity theory,
which has well-established models of computation and fundamental results.
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Surveys of this sequential theory are in Strassen [51] and von zur Gathen [25].
The present chapter is largely based on von zur Gathen [23].

The main prerequisite for our subject is basic linear algebra, plus the
material typically presented in a one-semester introductory algebra course.
Only the last section requires more algebraic background.

The material has been used in courses and seminars at University of
Toronto (Canada), Université Laval (Québec, Canada), Universitat Ziirich
(Switzerland), Universitat des Saarlandes (Saarbriicken, Germany), and Uni-
versidad Catdlica de Santiago (Chile).

13:2
Arithmetic Circuits

The simplest case of algebraic computation is provided by an arithmetic
circuit (called a straight-line program in Strassen [49]) such as in Figure 13.1.

This arithmetic circuit computes the two polynomials 3z, + 2z, and
3z — /22,; 3 and /2 are constants belonging to the ground domain R, and
z; and z inputs.
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FIGURE 13.1
An arithmetic circuit over R.
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In general, we have a ground ring F, and an arithmetic circuit over F
is a labelled directed acyclic graph. (Recall that a ring is equipped with two
binary operations + and * and elements 0 and 1 having the usual properties;
the ring Z of integers is an example.) The label of each gate (or node) has
two components. The first component is either a constant from [, an input,
or an arithmetic operation +, —, #, /. The second component is a numbering
of the gates. This numbering is only needed to distinguish the two inputs of
the non-commutative operations “—" and “/”: the lower numbered input is
the first operand. (In Section 13.8, we will have to introduce more operations,
such as testing for zero.) This model of computation forms the theoretical
basis for much of computer algebra, where all operations are exact, in contrast
to numerical computations of limited precision.

In Figure 13.1, we have the two constants 3 and /2 from the ground
field F' = R of real numbers, and two inputs z; and z3. Interchanging the two
second components 7 and 8 of labels, the arithmetic circuit would compute
V2, — 3z, at gate 10. In further examples, we will usually leave out this
second component of labels; in the figures, the “left” input is the first operand.

If Fis a field and z,,...,z, are the inputs, then at each gate a rational
function in I'(z), ..., z,) is computed. (A field is a ring with the further prop-
erty that each nonzero element has a multiplicative inverse; an example is the
field Q of rational numbers.) A technical requirement is that no division by the
rational function zero may occur. (In the general case, where I is a ring, but
not necessarily a field, each division must be executable in the ring; this is the
case, e.g., when the denominator has an inverse.) We say Lhat an arithmetic
circuit computes any of the rational functions computed at any of its gates.

In Figure 13.2, the graph to the left is not an arithmetic circuit, since
division by £ — z = 0 occurs. The arithmetic circuit to the right computes
the rational function 1/(z? — z). Although a division by zero occurs for the
special inputs 0 and 1 for z, it is still a legal arithmetic circuit—even in the
extreme case that the ground field I = Z; contains only 0 and 1.

Two measures of an arithmetic circuit o are of interest here. The depth
D(a) (= parallel time) is the number of arithmetic operations on a longest
path in the graph of a. The size S(a) (or sequential time) is the total num-
ber of arithmetic operations. (It equals the “number of processors” when
processors are not re-used.) For the a of Figure 13.1, we have D(a) = 2 and
S(a) = 6.

Since all operations are binary (i.e., with two inputs), increasing the
depth by one can at most double the number of inputs, so that depth log, n

is optimal.
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FIGURE 13.2
Two examples.

THEOREM 13.1

Let a be an arithmetic circuit. Then

1. D(a) < S(a).

2. If there exists,a single “output gate”, with a directed path from
every gate to it, then S(a) < 2P(e) _ |,
3. If there exists an “output gate” with a directed path from each
of n inputs to it, then D(a) > log, n.
PROOF

.(I) is trivial. To prove (2), for any gate v in a, we consider the max-
imal length D(v) of paths (where the length of a path is the number
of arithmetic gates on it) leading from inputs or constants to v: thus
D(v) is the depth of v. We show by induction on D(v) that v i; con-

nected to at most 2P™) — | arithmetic gates. (We do not count the

.1nput or constant gates.) This is suflicient, since by assumption, there
's some gate v connected to all S(a) gates, so that then 20(@) — 1 >
200) _ 1 > S(a) N
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If D(v) = 0, then v is an input or constant gate. If D(v) > 0, let w,
and w, be the two input gates to v. Then

D(v) = max{D(w,), D(wy)} + 1,

and from the induction hypothesis it follows that the number of arith-
metic gates connected to v is at most

(2D0n) 1) 4 (200=1) _ 1) 41 € 2PN -1 4200011 = 2P0, (13.1)

where the 41 comes from the fact that v is connected to v.

The proof of (3) is similar (Exercise 13.1.a). E

Note that this is a purely graph-theoretic proof, independent of the types
of gates we use, and thus valid for any directed acyclic graphs with fan-in two.
As an example, we consider the “iterated” sum f =z + -+ + of n
indeterminates. A binary tree a of additions computes f with D(a) = [log, n]
and S(a) = n— 1. Figure 13.3 shows the case n = 7. The same size and depth

works also for the product zy -+« x4,

I I Iq Ty Is Ig I7

O

FIGURE 13.3
A binary addition tree, for n = 7.
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Theorem 13.1 (3) says, in particular, that the binary trees for iterated
sum or product cannot be improved in depth; the same is true for the size
(see Exercise 13.1.b).

Only for rather simple problems like iterated sum are such optimal cir-
cuits known; Section 13.9 mentions other examples. In the next few sections
we pursue a more modest but more realistic goal. For a variety of problems
we will present algorithms which are not too far off from the trivial lower
bounds of log, n and n for depth and size, resp. More precisely, their depth
should be polynomial in logn (also called polylogarithmic in n, O((logn)*)
for some fixed k, or (logn)?")), and their size polynomial in n, i.e., O(n*) for
some fixed k, or n®("), Implicit in such asymptotic notions is the assumption
that we are not dealing with a single computational problem, but with an
infinite family (fn)nen of rational functions indexed by a parameter n, say
fn € F(z1,...,%,), and a circuit family (o, )nen with a, computing f,.

EXERCISE 13.1
Let a be a directed acyclic graph with indegree at most two, n “in-
puts” (= vertices with indegree 0), and a special “output” vertex (with
outdegree zero) to which every vertex is connected.

a) Prove that the depth of a is at least log, n.

b) Prove that the size of « is at least n — 1.

13.3
Multiplication

In this section, we consider multiplication of matrices and polynomials,
and inversion of polynomials modulo a power of the indeterminate.

Given two square matrices A, B € F™*™ over a ring J, their product
q i B
C = A-DB e F**" has entries

Ci = Z A.‘jﬂjk

15580

for 1 € i,k < n. (F™™ is the ring of n x n-matrices with entries from F.)
An arithmelic circuit is obvious from the formula:

1. Forallt,j,k (1 <i,j,k<n)compute A;j - Byi.
2. Forall 1,k (1 <1,k < n) compute Cy; as the above sum.




580 Chapter 13. Parallel Lincar Algebra

The depth of this circuit is 1 + [log,n] = O(logn), and the size is n* +
n?(n — 1) = O(n?). By Theorem 13.1 (3) the circuit is depth-optimal; is it also
size-optimal? It is not obvious, but in fact the size of matrix multiplication
circuits may be drastically improved. The first surprising improvement was
by Strassen [48], to O(n?#1), and the smallest size known today is O(n??7%),
with depth still O(logn) (Coppersmith & Winograd [13]).

An extension is the problem of iterated metriz multiplication, where we
are given matrices Ay,..., A, € I'*" and want to compute their product
Ay +++A,. We can form a binary tree, of depth [log, n] and size n — 1, with
cach “gate” being a multiplication of two matrices. The resulting depth is
O(log” n), and the size O(n*).

The ring F[z] of polynomials in x over a ring F consists of formal ex-
pressions of the form

f=a+ax+ - +a,z" € Flz],

with n € N and ag,...,a, € I7. This f has degree at most n; il a,, # 0, then
the degree deg f is equal to n. Given a second polynomial g = 37, . bya?,
their product b= 3", 0. cxz® = [+ g has coeflicients

The obvious circuit:

1. Foralli,j (0<1i,j<n)compute a;-b;.
2. For all &k (0 € k < 2n) compute ¢; as the above sum.

hias depth O(logn) and size O(n?).

We note that addition of two matrices or polynomials can be done in
depth 1, and iterated addition of n such items in depth O(logn).

Iterated polynomial product is the problem of computing fy -+ fy, where
fiveeoy Jn € Flz] have degree at most n. A binary tree of polynomial multi-
plications solves this problem in depth O(log? n). What is the resulting size?
Let us assume for simplicity that n is a power of 2, and consider the levels
0 (inputs), 1, 2, ...,k = log,n (output) of the tree. At level i, a tatal of
n/2' multiplications of polynomials of degree at most 2'~'n are performed, in
depth O(logn) and size at most

nf2' < 0((2''n)*) = O(2'n?).
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Summing these sizes over i, we get O(n*), and overall depth O(log? n). We
will mention in Section 13.9 that this problem can even be solved in optimal
depth O(logn).

Given three polynomials fy, f2,9 € Flz], fi and f; are called congruent
modulo g if their difference is divisible by g:

fi = famod g < 3he Flz] f — [ =gh

If f € Flz] and n € N, then [ is invertible modulo z™*! if there exists some
g € Fz] such that fg = 1 mod z"*!; such a g is called a (modular) inverse
of f. If f = ag + - - - is invertible modulo z™*!, then it is invertible modz, so
that ap = f(0) € F is invertible; if F' is a field, this is equivalent to ag # 0.
The algorithm below shows thal also the converse is true.

As an example, let n =3 and f=1-2z. Theng =1+z+2? +2°
satisfies

fg=1-2z'=1mod 2*,

and g is an inverse of f modulo z*.
The following algorithm generalizes this yeometric series.

ALGORITHM 13.1
Polynomial inversion

Input: f € F[z] with f(0) € I invertible.
Output: g € Fz] with fg = 1 mod z™+!.

Compute b= f(O).‘l €F,
compute h = (f(0) - f) - b € Flz],
for all i, 0 € i < n, compute h*,

return g = b+ Y gcicn

L - I

EXAMPLE 13.1
Let n =3 and f = 1+ 7z + 2922 + 80z® € Q[z]. Then f(0) = 1 and
h = —7z — 29z? — 80z3. The algorithm calculates

g=14+h+0+13=1-"Tz+20z? - 172* mod z*.

n

Note that we have left out the terms of order 4 or higher, since they
are irrelevant modulo z*. The reader might check that indeed fg =
1 mod z.
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We first convince ourselves that algorithm Polynomial inversion works
correctly. Note that z divides h (which we write as “z | "), so that z"+! | A»*1,
or h"t! = 01mod z"*!. Thus

fa=(00-h)f(0)-b E h'=1-4"" =1 mod 2™, (13.2)

0<i<n

and g is indeed a modular inverse of f.

Making use of iterated polynomial product for the powers in step 2, the
depth is O(log® n), and the size O(n®).

The algorithm displays the technique of “reduction” that we will use
profusely in the next sections: solving one problem (here: modular inversion)
by appealing to another one (here: iterated polynomial product). Although
conceptually important and convenient, it has the disadvantage of blowing
up the size (and sometimes the depth) more than necessary. In our case,
we observe that—as in Example 13.1—we only need all polynomials modulo
z"+! ie., only the first n + 1 coeflicients. If we truncate all results modulo
z"*! we only have to perform n — 1 multiplications of polynomials of degree
at most n, resulting in size O(n®). We have proved the following result.

THEOREM 13.2

Let F be e ring. Polynomials in I[z] with constant term invertible in I
can be inverted modulo z™*! in depth O(log? n) and size O(n®).

154
The Determinant

The parallel algorithms discussed so far were straightforward. We now
turn to a fundamental problem for which a good parallel solution is not obvi-
ous: the solution of systems of linear equations.

The problem is of central importance, and many sequential algorithms
for it are well-studied. Suppose we want to solve

Az =10,

where an n x n-matrix A € F"*" over the ground field /' and an n-vector
b € F™ are given, and we are looking for a vector z € F" satislying the
equation. Such a solution exists il and only if b is a linear combination of the
n columns of A, and if the determinant det A is nonzero, there exists a unique
solution z.
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The classical algorithm of Gaussian elimination consists of n stages. In
each stage, appropriate scalar multiples of a “pivot row” are subtracted from
other rows to introduce zero entries in one column. The end result is an
upper triangular system of linear equations with the same solutions as the
original one. It can now easily be solved by “back-substitution”. All the row
operations of one stage can easily be performed in three parallel operations.
However, the execution of the stages looks inherently sequential, and it is not
clear how to obtain parallel time less than n, say.

We now discuss a very different algorithm, invented by the Leningrad
mathematician Chistov [11]. Csanky [14] had presented the first parallel algo-
rithm for the determinant using depth O(log® n) and size n®(") (Exercise 13.4).
It has the merit of being the first nontrivial parallel algorithm in linear alge-
bra, within the framework of this chapter. Unfortunately, Csanky’s algorithm
only works over fields F of characteristic zero, i.e., if Q C F, and this excludes
the important case of finite fields. Next, Borodin et al. [8] gave an (admittedly
awful) solution for the general case. Soon after that, Berkowitz [6]—then a
student at University of Toronto—found an algorithm that competes with
Chistov’s in cost and clarity.

If Az = b, £ = (zy1,...,2,) € F™, and det A # 0, then Cramer’s rule
says that z; = det A"/ det A, where All € F"X" is obtained by substituting b
for the ith column vector of A. Thus it is sufficient to compute determinants
of matrices. Note that after performing Gaussian elimination, det A is the
product of the diagonal entries of the resulting upper triangular matrix, and
thus easy to compute.

We will actually solve.the seemingly harder problem of computing the
characteristic polynomial

X(A) = det(zl, — A) =co+ 17+ ++ + caurz™! + 2" € Fla]

of a matrix A, where F is a ring, I,, € F"*" the identity matrix (with ones on
the diagonal, and zeroes elsewhere), and z an indeterminate. Then det A =
(=1)"co can be read off (and —c,_, is the sum of the diagonal entries of A).

EXAMPLE 13.2

Let us take
=3 0
A= 1 2 =1 l|e@"™.
-2 3 3
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Then

x(A)=det| -1 z-2 1 |=-17+20z- 72"+,

and det 4 = —17. .

If Fis a field, A = (ﬂij)I<i.an € F"*" and 1 < r € n, we consider the

lower right submatrix

Ar = (ai;)r<ijgn € F7 X7
of A, where r' =2 —r +1 (see Figure 13.4). (Thus the rows and columns of
Ar are indexed by r,7 + 1,...,n.) Il we let

dr = det(l» — zA,) € Flz],

then

x(A) det(zln — A) = det (z1,, - (I, —z7' 4))

= det(zly) -det(f, —z71A) = z™ det(fyr — 271 A)) = z"d, (=z1).

Il

The polynomial z"d, (z~!) is called the reversal (for degree n) of d,, since its
coefficient sequence is the reversed coefficient sequence of d;.

The matrix I,; — zA, € F[z]" %" is invertible over F(z), since its de-
terminant d, is a nonzero polynomial, with value 1 at z = 0. We denote
by

B = (b7, gijcn = (I — z4,)""

FIGURE 13.4
The lower right submatrix A,.
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its inverse. Thus each b‘(-;) € F(z) is a rational function in z, and bf;} «d, €
Flz]. Let us further denote by b7 = (bi;}],ngH the leftmost column, and by
b, = b,(r:} € F(z) the top left entry of B("), Then by definition of the inverse

(I - zA,)- 6,(,:) =(1,0,...,0)".

The determinant of the matrix obtained by substituting (1,0, ... ,0)! for the
leftmost column of I+ — zA, equals

dEt([{r_l_”a S IA,-+1) = f1r+| .

Thus expressing the top entr b, of bf.'.'] according to Cramer’s rule, we find
P £ P i 4 '

b, =dr+1/d"' (1‘]‘3)

(With dnyy = 1, we note that d-(0) = 1 for all r, so that in particular
all denominators are nonzero.) Multiplying all equations (13.3) together, we

obtain
II b =4
1<r<n
This is an equation between rational functions in = (which again evaluate to 1
at z = 0).
A special case of the geometric series for the inverse (13.2) is

(1 -za)- z z*a* = 1 mod 2", (13.4)
0<k<n

This equation holds when a is in any ring and z an indeterminate over this
ring commuting with a. We apply (13.4) with a = A,, and obtain

B = (Ip=24,) = z z* A* mod z"H1,
0<k<n

If we define B") as the sum on the right hand side, and b, as its top left
entry, then each bf;l € Flz] is a polynomial in z of degree at most n, the

denominator d, of b, is invertible modulo z, and b, = b, mod z"*!, Thus we
have
H b = d" mod ™!,
1<r<n

Putting things together, we have the following algorithm.
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ALGORITHM 13.2
Characleristic polynomial
Input: A matrix A € F™*", where I is a commutative ring with 1, and n € N.

Output: The coefficients cg,...,cq of x(4) € Fz].

1. Forallk,r (1 < k,r <n), compute A* and b, = (2099; :r"A,’E) :
2. Compute b € F[z] with degb < n and

[Then b= d;! mod z"+! ]

3. Compute ¢ € F[z] with degc < n and ¢ = b~! mod z"*!, using
the algorithm Polynomial inversion. [Then ¢ = d;.]

4. Return the coefficients of the reverse x(A4) = z"c(z™!) of c.

We have already seen that the algorithm works correctly over a field I,
The cost follows from the estimates of the subroutines used:

Step Subroutine Depth Size
iterated matrix product O(log"n) O(n®)
iterated polynomial product O(log®n) O(n®)
polynomial inversion O(log*n) O(n®)

0 0

= N

For the estimates of steps 2 and 3, we use the truncating algorithm of Theo-
rem 13.2. Step 4 is [ree, since only the coefficient sequence is reversed.

The algorithm actually works over an arbitrary commutative ring with 1.
For this, we note that the algorithm has no divisions (the “division” in step 3
is by 1), and computes the characteristic polynomial of a matrix over Z with
indeterminate entries. Therefore it computes x(A) for any square matrix A
over a commutative ring F.

EXAMPLE 13.3
We first trace the algorithm on the matrix of Example 13.1, and then
check one of the equations used in deriving the algorithm.

Ar=A= 1 2 =1

13.4. The Determinant

-16 =24 21
Al={ ¢ 0 ~5|, Al=| 22 -23 -i5
-9 11 8 -23 82 13
2 -1 3 -5 1 w18

As = AZ = 3 _
=1 aP™=ls st ln
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=0 #=[5], £ =[F],

b = 142z+42°-162° (= by mod z4),
by = 1+42z+322+7° (= by mod z*),
bs 1+ 3z + 927 + 272" (= by mod z4),
b = 147z +29z% + 807°,
c = 1-Tr+20z® - 172 (see Example 13.1),

reverseof ¢ = =17+ 20z — 7z? + 27,

which is indeed x(A). Here is the special case by = dy/d; of equa-
tion (13.3):

det(l3 —xzAy)-by = (1 -7z + 2022 — 172%) -
(1+ 2z + 2% — 162%)
1-5z+ 72 = (.iCL(Iz — zA;) = dz mod z4.

(‘1 ¥ bl

With a little care, we can improve the size of the circuit to O(n'), in fact,
to even less. The following notation is convenient. We consider all families
@ = (an)nen of arithmetic circuits, where a,, computes the product of two
n x n-matrices over F'; then a computes matriz multiplication. We define the
(parallel) matrix multiplication size as the smallest size sufficient to multiply
matrices with logarithmic depth:

M(n) = min{S(a,): a computes matrix multiplication
and D(a,) = O(log n)}.
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The standard algorithm used in Scction 13.3 shows M(n) < 2n®. Clearly
M(n) > n?, since n? outputs have to be computed; the best lower bound
known today is M(n) > 2n? — 1 (Brockett & Dobkin [9]). The best upper
bound known today is by Coppersmith & Winograd [13]:

2n? = 1 € M(n) = O(n*).

The reader misses nothing essential in the following if she thinks of M(n) =
2n? and the standard matrix multiplication algorithm. The f[ollowing obser-
vation is from von zur Gathen & Eberly [28].

LEMMA 13.1
If A€ F™*™ and b € F™, then all vectors A%, A'b, A%b,..., A"bE F"
can be computed in depth O(log® n) and size at most 2M (n)(1 + log, n).

PROOF
Let ! = [log, n] < 1+log, n, so that n < 2'. In a first stage we compute

VT Gt

in depth O(log® n) and size IM(n). In the second stage, we compute
successively Bg, By, Be,..., B € F"*™ as follows. DBy has b as its first
column, and zeroes elsewhere. DB;’s first 2'~! columns equal those of
B;_y, the next 2¢=! columns equal the first 2°=! columns of A2 - B;_,,
and the other columns are zero. (In By, only the next n — 2'=! columns
are new.) One seces inductively that the jth columm of B; is AJ='h il
1 <3 < 2%, and zero otherwise. (In B, this is valid for 1 < 7 < n.) The
cost, is the same as for the first stage. .

In step 1 of the algorithm Characteristic polynomial, we do not really
need all A%, but only all top left entries e, Akel, wheree, = (1,0,...,0) € F".
For any r < n, all vectors A¥el (0 < k < n) can be computed in size at most
2M(n)log, n by the lemma. Thus we have the following result.

THEOREM 13.3

The characteristic polynomial of n X n-matrices can be computed on
an arithmetic circuit of depth O(log® n) and size at most 2nM (n)(1 +
log, n), or size O(n* logn).

A better size bound O(n'/2 M (n)) can be obtained in characteristic zero
(Preparata & Sarwate [45], and a slight improvement in the general case
is in Galil & Pan [20]. Kaltofen & Pan [37] show how to solve Az = b
by a probabilistic circuit of depth O(log® n) and size O(M (n)logn) if A is
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nonsingular, the characteristic of the field F is zero or larger than n, and the
field is sufficiently large (say, #£F > 6n?).

EXERCISE 13.2 (Inversion of triangular matrices)

Let F be a field, and
B 6
A= ‘2:'(2
(C D)EF

a non-singular lower triangular matrix. Show that

L f3md 0
A7l =
( =P-lgn-1 Dl )

Generalize this fact to arbitrary non-singular lower triangular matrices
A € F™™ and use your results to construct a recursive parallel algorithm
for computing the inverse of such matrices in O(log?® n) time using o(n?)
processors.

EXERCISE 13.3 (Lincar recurrences)
Assume you are given a system of linear recurrences

x) = Oy,
Tz = axnrx; +cy,
ITn = QuT) +apaTp+ - -+ aApp_1T, + Cp,

where a;j,¢; € F, and F is a field. Letting A = (a;;) € F™*", z =
(xi) € F™ and ¢ = (¢;) € F™, this can be rewritten

Az +c=2z.

Give an efficient parallel algorithm to solve this system of linear recur-
rences. [Hint: Use your solution to Exercise 13.2.]

EXERCISE 13.4 (Csanky’s algorithm)
Let F be a field of characteristic zero (or of characteristic larger than n),
A € F™*™ and write

x=det(lz — A) = 2" — 512" + 552" — ... 4 (=1)"s,, € Fz]

for the characteristic polynomial of A. Let Ay,..., )\, be the eigenvalues
of A (say in an algebraic closure of I); these are just the roots of y.




5900 Chapter 13. Parallel Linear Algebra

a) Show that

Sp-= det(A) = H Ai
i=1

The trace tr(A) € F ol A is defined to be the sum of the diagonal entries
of A:
()= ) A
1<i<n
b) Show that
5 = tr{A) = z 1\,‘.
1<1<n

In other words, the trace of such a matrix is also the sum of its

eigenvalues. Show also that tr(A¥) = " A¥ for all k € N,
c) (Newton identities) Prove that

1
Sk = £okoy - tr(A) = sumy - r(A%) 4 -

+ (=1)%2sy - tr(AF~1) + (=1)F" - te(A%)).

[Hint: Use a) and the fact that

SRR 5

ISi| ﬂl:(-»-(l‘;‘Stl

Airdiz v Ak

In other words, sy is the kth elementary syminetric polynomial in
the A;’s.]

d) Now apply c) and Exercise 13.3 above to give an efficient parallel
algorithm for computing the coeflicients s; of the characteristic
polynomial x € F[z] of A € /™", .

EXERCISE 13.5 (Inversion of non-singular matrices)

The Cayley-Hamilton theorem states that any matrix A satisfies its char-
acteristic polynomial: if x = z" — s;2" ' + ... * 5,1z F 5,,z° is the
characteristic polynomial of A € F™**", then

X(A)=A" =5 A" "4 ks, yAFs I =0.

Use this fact, together with Exercise 13.4 above, to show that if A €
F™™ is non-singular, then the entries of A=! can be computed from A
in O(log? n) parallel arithmetic steps using O(n*) processors.
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13.5
Polynomial and Matrix Problems

The goal of this section is a set of reductions between polynomial and
matrix problems. A reduction f < g is an arithmetic circuit for f of depth
O(logn) that uses g; precise definitions are in Section 13.8. The following
construction is useful for our purpose. We let I be any ring, possibly non-
commutative,  an indeterminate over F', d € N, and consider the mapping

ra: Flz] — Jixd

ap ap -+ ag-)

Qg+ a1+ >+ ¥
a,
Q0 g

Thus the image of 74 is the set of Toeplitz matrices A in upper triangular
form: A;; = Aig,jpx for all appropriate values of 7, 3, k, and A;; = 0if i > j.
The proof of the following lemma is left as Exercise 13.6.

LEMMA 13.2
T4 15 a ring homomorphism with kernel (z%).

It is convenient to have a standard language to describe our computa-
tional problems, such as the following.

PROD = (PRODy)nen with PROD,, = z, - - - 2, is the product problem.
DETERMINANT = (DETERMINANT, )nen with

DETERMINANT,, = det ((z:;)1<i,j<n)

is the determinant problem.
We define further computational problems:
POLYPROD: product of two polynomials.

This is shorthand for defining a family POLYPROD = (POLYPROD,,)nen
of sequences of polynomials POLYPROD,, = (co,...,C2n), where cx =
2ipj=k aibj € Flag,...,an,bo,...,by}, and aq, ..., b, are indeterminates
over [,
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Similarly, we have

ITPOLYPROD,: fi---fn for fi,...,fn € F[z] of degree at
most n,

POLYINV .: f~' mod z" for [ € Fz], f(0) #0,

MATPROD,: A:DBfor A, B g I"*",

ITMATPROD,: A;--:A, for Ay,...,A, € F**",

MATINV ,: A~ for A € F™*" invertible.

THEOREM 13.4
1. POLYPROD <, MATPROD,
2. POLYINV <p MATINV,
3. POLYINV <y ITPOLYPROD <z ITMATPROD.

PROOF
For (1), suppose we want to compute the product of f,g9 € IFlx] with
degree at most n. By Lemma 13.2 we have

T2n41(f9) = Tant1 (f) - Tans1 (9) = MATPROD 4 (Tznt1 (1) Tan1 (9))-

Thus the reduction has three (trivial) steps: 1. produce the matrices
Tans1(f) and T2,41(9), 2. form their product, by calling MATPROD,
and 3. read off the required output. More formally, the reduction circuit
has 2n + 2 input gates for the cocfficients of [ and g, the constant
zero, and a single computation gate MATPRODz 41, with 2(2n + 1)?
inputs and (2n + 1) outputs. The input gates and zero are connected
to the MATPROD gate according to Tza41, and the functions required
for POLYPROD are among those computed by the MATPROD gate (in
fact, the first row). The depth is 1, and the size is 2(2n + 1) -1.

The reduction for (2), and the second pne in (3) are similar. The first
reduction in (3) is given by algorithm Polynomial inversion. .

We now define further problems:

DETERMINANT,: detA for A € F™*",

CHARPOLY : x(A) for A € F**™,
MATPOWERS,: A AR A for A € PR,
NONSINGEQ,,: z with Az = b for A € '™ invertible

and b€ F".

We write “f <p g + I” for a reduction computing f that makes oracle

calls both to g and h, and observe that f <p g+ h and g <p L imply

that f <p h. We say that f is equivalent to g (f = g) if
and g < f.
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and only il f < g

THEOREM 13.5

DETERMINANT, CHARPOLY, ITMATPROD, MATPOWERS, MAT-
INV, and NONSINGEQ are equivalent. :
PROOF

We will exhibit a complete circle of six reductions. The claim then
follows from the transitivity of <p (Theorem 13.10 (1))

1. DETERMINANT <r CHARPOLY: the determinant is the

constant term of the characteristic pol i i
polynomial, up to the sign.
2 ‘CH.ARPOLY 5.;- ITMATPROD: The algorithm Character-
istic polynomial of Section 13.4 has shown that

CHARPOLY <y MATPOWERS
+ ITPOLYPROD + POLYINV.

Together with Theorem 13.4 (3) and the trivial
MATPOWERS <p ITMATPROD, the required reduction

follows. This is by far the most challenging reduction in this
proof.

3. ITMATPROD <y MATPOWERS: Given Ajs o e, Ay € PNER
we may consider i .

I A 0

b= - € (F“x“){""'”*(’l'i"l)
.Au
0 I

as an (n? +n) x (n? 4 n)-matrix. Then

I + - A A,
B" = I e *
*
0 I

and ITMATPROD,,(Ay,..., A,) can be read off MATPOW-
ERS, 2 ,.(DB).
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4. MATPOWERS <p MATINV: Given A € F'"*", we consider
DB =1,41(1- Ax) € (F"x")‘“"'l}x("“l
as an (n? + n) x (n? + n)-matrix. By Lemma 13.2,

Tn+1 ((AI)'H_I) == 01

B~ = (1 = 11 (Az)) !

- Z Tn+1 (AI)k

0<k<n
=1"“+1( Z flka)
0<k<n
I A o A"
—_— I :
A
0 I

Again, MATPOWERS, (A) can be read off MATINV 2, (B).
MATINV <r NONSINGEQ: Given an invertible A € F™*",
find zy, ..., z, € F" satislying Az; = e, where ¢; = (0,...,
0,1,0,...,0) € F™ has a 1 in position 1, and zeroes clsewhere.
Then z; is the ith column of A~1,

6. NONSINGEQ <y DETERMINANT: follows with Cramer’s

rule. : ]

¢

We define the “complexity class”
DETf = {f: f < DETERMINANT})

of problems reducible to the determinant. (This is not an lionest complexity
class, since it is not defined just by explicit constraints on computational
resources like depth and size.) Asusual, we call a problem f € DETf complete
if g < fforall g€ DETp. Theorem 13.5 can then be stated as follows.
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THEOREM 13.6
Let F be a field. DETERMINANT, CHARPOLY, ITMATPROD, MAT-
POWERS, MATINV, and NONSINGEQ are complete for DETY.

EXERCISE 13.6
Prove Lemma 13.2.

13.6
Rank of Matrices

In order to solve general (possibly singular) systems of linear equations,
we start with a related problem: the rank of malrices, and present a fast
parallel algorithm, due to Mulmuley [41), in this section. Before that result,
Ibarra et al. [31] had found a very simple algorithm which works over a “real
field” F such as F = Q or ¥ = R. The first shallow circuit for arbitrary F
was in Borodin et al. [8]; it has the drawback of requiring random choices in
the algorithm. All these methods use depth O(log? n) and size n°(),

The rank r = rank(A) of a matrix A € F"*" over the ground field F is
the maximal size of nonsingular minors of A. If

kerA = {z € F™: Az = ()
denotes the nullspace of A, then
r+ dimpker A = n. (13.5)

If F C K are fields and A € F**n C K™*" then A has the same rank
whether considered as a matrix over F or K; in other words, the rank is
invariant under field extensions,

Section 13.8 discusses in more detail the model in which the computa-
tions of this section are performed (see Examnple 13.4).

The rank r = rank A is sometimes called the geometric rank. A related
quantity is the algebraic rank ¢ = rankagA of A, defined by

t+ po(A) = n,

where p1(A) is the multiplicity of 0 as a root of x(A). Note the analogy with
(13.5); the “geometric multiplicity” dimker A of 0 in A is replaced by the
algebraic multiplicity pgg. Since o 2 dimker A, we have ¢ < r. Using the
algoritlun Characteristic Polynomial, we can compute x(A) and t quickly.
The idea now is to reduce the computation of rank A to that of rank,; A.
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What is the relation between rank and algebraic rank? Let s = n —
rank A, so that s = dimker A, and suppose that u,,...,u, is a basis of /™,
with uy,...,u, being a basis of ker A. Such a basis always exists, and in this
basis A has the form

A= (136}
541

Clearly x(A) = z* « x(B), and thus
rantkA=r=n—-s<n~L= rankaig A.

We can calculate x(A) and rank,z A fast in parallel (Section 13.4), and would
like to use this to compute rank A. Here is a suflicient criterion.

LEMMA 13.3
if rank A = rank A?, then rank A = rankgg A.

PROOF

We clearly have ker 4 C ker A%, so that the hypothesis implies that
ker A = ker A%, In (13.6), it is sufficient to have B nonsingular, since
then x(B) does not have 0 as a root, and ¢ is the multiplicity of 0 as a
root of x(A), and hence rank A = rankaig 4.

So suppose @ = (@g41,...,8n) € F** with Ba = 0, and let a
(0,...,0,8541,...,a,) € F™. Then Aa € ker A, and hence A%a =
Thus @ € ker A = ker A. The special form of @ implies that @ =
hence a = 0, and indeed B is nonsingular.

S

We now try to get into this favorable case by constructing from A a
matrix B with rankB = rank B?, and such that rank A is casy to compute
from rank B. We first replace 4 € F™*" by

A = }?‘ ‘3 EF‘an:En'

Then rank A = IrankA’, and A’ is symmetric. Writing A for A’ now, we may
assume that A is symmetric.
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Let y be an indeterminate over F, F(y) the field of rational functions in

y over I,

Y =diag(l,y,...,y" ") = : € Fy)™ ",

n-—|1

‘ 0 y

and B =Y A. Since Y is nonsingular, we have rank B = rank A. (We use the
fact that rank A is invariant under the ficld extension F € F(y).)

LEMMA 134
rank B? = rank .

Proor
[t is suflicient to show that

rank AYA = rank A,
since Y is nonsingular and
rank B? = rank YAYA = rank AYA = rank A = rank YA = rank B.

Since rank AYA < rankA, we only have to show rank AYA > rank A.
We prove this by showing ker AYA C ker A.

So let u € F'(y)" with AYAu = 0. We want to show that Au = 0. After
multiplying up the denominators (in F[y]) of the coordinates of u, we
may assume that u € Fly]". Set v = Au € F[y]". Let z be a new
indeterminate over F, w = v(z) = Au(z) € F|z]", and

§= z wivy'™! = w'Yv = v(2)Vv =u(2)!A'Y Au = 0,
1<i1<n

where we have used that A is symmetric: A' = A. Suppose that v # 0.
Let m; = deguv; (with deg0 = —00), m = max{m;: 1 <i < n), k =
max{i: 1 < 7 < n,m; = m). Terms containing z™* only occur in
swnmands of Y~ w;v,y' ! € Fly, z] with degw, = m = my, and when
it < k, then such a summand has degree less than my + &k =1 in y.
Therefore z™y™*y*=! Lias nonzero cocfficient in the above sum. Thus
s # 0. This contradiction shows that indeed v = 0, and thus ker A =
ker AYA. .
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ALGORITHM 13.3
Matriz rank
Input: A symmetric matrix A € F™**",

Output: rank A.

1. Compute B = Y A, where Y is defined above, using an indetermi-
nale y.

2. Compute x(B) = det(z] — B).

3. Return r = rankagD.

THEOREM 13.7
Over any field F;, MATRANK < ITMATPROD.

PRQOF
The algorithm Matrix rank reduces the rank of n x n-matrices to the
computation of the characteristic polynomial of matrices in F[y]"*",
with each entry of degree less than n. Each coeflicient of such a charac-
teristic polynomial has degree less than n?. Algorithm Characteristic
polynomial in Section 13.4 reduces this in turn Lo the iterated product
of n x n-matrices over F[y], again with degree in y less than n.
Thus suppose we want to compute E = D, ---D,,, with Dy,...,D, €
Fly]"*". Write D; = Zugj-:n D.-j-yj, with all D;; € F"*". Then the
entries of F have degree less than n? and can be read off the iterated
product of all -
2 i o

¢n7(Di) E (ann)n xn EFn xn !
by Lemma 13.2. Overall, we have reduced MATRANK to
ITMATPROD. "

Note that just saying “a product of n n x n-matrices, each entry a poly-
J ying Y

nomial of degree less than n” would only yield depth O(log® n).

COROLLARY 13.1
Let I be a field. The rank of n x n-matrices can be computed in depth
O(log? n) and size n°1),

18.7
Linear Algebra Classes

In this section, we show that most elementary problems from linear

algebra are complete for one of two complexity classes: DET  or RANK .
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We define the “complexity class”
RANKp = {f: f < MATRANK]},

and the further problems:
BASIS: compute an n-bit vector marking a maximal
set of linearly independent columns of A € F**n
(i.c., a basis for the column space of A),
SOLVABILITY: compute the bit (3z € F™ Az = 1),
MAXMINOR: mark rows and columns of 4 € [/"*n
forming a maximal nonsingular submatrix.
These problems are in general not functions, but relations with several
possible answers. This issue is discussed in greater detail in Section 13.8.

THEOREM 13.8
Let F' be a field. Then

1. RANKp C DETy.
2. MATRANK, MAXMINOR, BASIS, and SOLVABILITY are
complete for RANK .

PROOF
(1) follows from MATRANK < ITMATPROD € DETp.

(2) We give a circle of four reductions:

1. MATRANK < MAXMINOR: The rank equals the number
of columns of a maximal nonsingular minor.

2. MAXMINOR < BASIS: Given A € F™*" mark a basis
Aiyy.-, A, of columns of A for the column space of A. Ap-
pend n — r zero columns to these to get B € F"*", Mark a
basis for the row space of B (obtained from a column basis
for B*). Then the marked columns and rows of A form a
maximal nonsingular minor.

3. DBASIS < SOLVABILITY: Suppose we are given A € F™*",
with columns 4,,..., A4, € I'". For all i, 1 < i < n, check
whether the system

Z AJ;IJ = f‘,‘

1<)<i
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of n linear equations in 7 — 1 indeterminates has a solution
(Z1,...,%i1) € F'='. (To bring this into the required square
format, append n—i+1 zero columns, and check for x € F".)
A basis is formed by those A; for which no solution exists.
SOLVABILITY < MATRANK: Az = b has a solution if and
only if

rank A = rank (A[b),

where Alb € F™*("+1) is A with column b appended. .

We define further problems:
INDEPENDENCE: on input z,,...,z; € F",

decide whether they are linearly independent,

SINGULAR: decide whether A € " *" is singular,

EQ: given A € F**" and b € F'*, compute the bit
c=(Jy € F" Ay =b), and if ¢ = true,
compute z € F"* with Az = 0.

NULLSPACE: compute a basis for the nullspace

{b€ F™: Ab=0} of A € Fr*»,

THEOREM 13.9
Let F be a field. EQ and NULLSPACE are complete for DET)-.

PROOF
We show

EQ < NULLSPACE < NONSINGEQ < EQ.

EQ < NULLSPACE: Let A € F™*™ b€ ', Then

b A :
VIEF“ (A.£=b — -:Owltl]yz—l)_

Determine a basis z;,...,2r € F™*! of the nullspace of
3 k I

A b

F(n-l-l]x(n—{»l)'
0...0 0]°

Then return ¢ = true if and only if Zim41 # 0 for some 1,
1 i<k If e=true, let @ be the smallest index such that
Zing1 # 0, and return also

-1

i 21,5220

Zin41
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NULLSPACE < NONSINGEQ: Given A € F™*" find a
maximal nonsingular minor M of A, using MAXMINOR <
NONSINGEQ. For simplicity, we may assume that M is the
upper left r x r-submatrix, where r = rankA. For all 1,
r < i < n, solve the nonsingular system of linear equations

Mz =y,

where y; € F7" consists of the top = entries of the ith column

of A:
r

—_———— i

Forr <i<n,let

% = (24,0,...,0, -1, 0,...,0) € F".
T

i

We now claim that z,,4,...,2, form a basis of the nullspace
ker A of A. Let r < i < n. We first show that z; € ker A. For
1 <3 <r, the jth entry of Az; is

Z .‘ljkz,k = z .‘l_,]_-:.i'.'.k —AJ. =)

1<k<n 1<k<r

For r < j < n, the jth row 4,, of A is a linear combination of
the first rows Ay,,..., A, since M is a maximal nonsingular
minor. Therefore again (Az);, = A,.z; = 0. Combining
these, we have Az; = 0.

On the other hand, dimpker A = 1 — r and Zppgs iy Zn &
ker A are linearly independent, becanse 2; has a —1 in position
z, and all the other z;’s have a zero there. Therefore these
form a basis of ker A.

NONSINGEQ < EQ is trivial. o

_B
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The following problems are all unsolved.

OPEN QUESTION 13.1
1. Is RANKp # DETR?
2, Is INDEPENDENCE complete for RANK g ?
3. Is INDEPENDENCE < SINGULAR?

13.8
Arithmetic Boolean Circuits

In the previous sections, we have derived (exact) algorithms using par-
allel time O(log® n) for the basic problems of linear algebra. In this section,
we describe the elements of a theory of parallel algebraic computation, and
where the above results fit into that general framework.

We start with arithmetic Doolean circuits, a generalization of our arith-
metic circuits necessary to deal with decision problems, which we have already
used for the rank of matrices. Then we define some parallel complezity classes,
in analogy with well-studied Boolean complexity classes, and finally formalize
reductions between two problems. In Sections 13.5 and 13.7, many problems
from linear algebra turned out to be equivalent either to the determinant or
to the rank problem, so that any depth improvement for one of them would
automatically improve the depth for all of them.

How can we solve a general system Az = b of linear equations, where A
may be singular? Even for a single equation az = b, with a,b € I, all we can
do with an arithmetic circuit is to return z = b/a. However, we would also
like to output the information “no solution” if @ = 0 and b # 0. So we now
extend the model to allow such tests.

First recall that a Doolean circuit is a labelled directed acyclic graph,
similar to an arithmetic circuit. The diflerence is that the values manipulated
are not from an algebraic domain, but the two Boolean values T (for “true”,
or 1) and F (for “false”, or 0). Accordingly, the operations are the Boolean -
(negation “not”), A (conjunction “and”), and V (disjunction “or"). Boolean
circuits are a model of the electronic circuits, the innards of digital computers.

We now define an arithmetic Boolean circuit (over a ring F) to be a
labelled directed acyclic graph, where both arithmetic and Boolean labels are
allowed. Thus we have arithmetic inputs and constants from F, and Boolean
inputs and constants from the Boolean universe B = {T,F}, and the seven
operations +, —, %, /, =, A, V. Each gate has a type—ecither arithmetic or
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Boolean—and the appropriate number of inputs with the right type. As an
example, a A-gate has two inputs, both from a gate with type “Boolean”.
Two further gates provide the interface between the arithmetic and the

7
Boolean parts: test gates and selection gates. A test gate “r # 0" has an
arithmetic input z and a Boolean output y:

[ wags,
EY R s

A selection gate has two arithmetic inputs z; and x3, a Boolean input y, and
an arithmetic output z:

o I il'y=T,
T |z il y=PF.

For simplicity, we assume in the sequel that the ground domain F is a field.
Since we now have zero-tests, we insist that every division in « is by a nonzero
field element, for any specific input supplied for the variables.

Figure 13.5 shows an arithmetic Boolean circuit a with Lwo inpuls x,
and z, (at gates 2 and 3), the arithmetic constant 1 at gate 1, and one

FIGURE 13.5
An arithmetic Boolean circuit for a linear equation zt = x,.
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arithmetic plus one Boolean output, at gates 8 and 9. The value of gate 9 is
T il z = (x; # 0V 2y =0) is true, and the value y of gate 8 is

{ azpfxy ifxy) #£0,
y:

Ty ity =0

Thus a solves the linear equation ;! = x5 in a satisfactory way: the output
z is T if a selution exists, and IF otherwise, and if z = T, then y is indeed a
solution. :

The arithmetic Boolean circuit a splits the input space S = F? into
three regions: Sy = F?\ ({0} x F) = {(x,,22) € F*:2; # 0}, S; = ({0} x
F)\{(0,0)}, and S5 = {(0,0)}. These form a partition of §: S = §;US,USj,
and §;,NS; =0 il 1 # 3. In each region, two functions are computed:

y=zsfz; and z=T on S,
Y =3 and z=T on Sy,
3==0 and z=T on Sj.

We will call the collection f, of all these
fn = ((Sl ' IZ/:‘BI ' T)1 (521 L2, F)\ ('53 ’ U: T})

a piceewtse rational function. The problem of determining whether a linear
equation ;3¢ = x3 has a solution ¢, and computing a solution if one exists,

corresponds to “the” piecewise rational [unction
q= ((S| ,Iz/.'f.'l,T), (Sg, F), (53‘ IU,T)),

where w is any element of [7. Thus in fact g consists of not one, but many
piecewise rational functions, one for each w € .

We say that a computes ¢ since for any'input (z;,x;) € F2, one of the
piecewise rational functions making up gy can be read ofl the gates of a. If
(1,:2) € Sy, the outputs y and z contain the unique correct answer to g. If
(x1,2) € Sq, z has the correct value, and y is irvelevant. If (xy,x2) € Sy, the
answer (y, z) = (0, T) is among the correct ones for ¢ (with w = 0); the value
y = 00 was chosen arbitrarily.

In general, we call any of the objects computed by an arithmetic Boolean
circuit e a piecewise rational function, and each computational preblem is a
family 9 = (yn)nen of collections g, of such piccewise rational functions. A
family o = (@, )nen of arithmetic Boolean circuits computes g if for each n,
v, compules one of the piccewise rational functions in g,,.
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EXAMPLE 13.4
The problem of computing the rank of matrices would be formalized as

follows: MATRANK = (MATRANK, )nen with

MATRANK,(A) =T---TF---F for A € X" and 7 = rank A,

r n—r

EXAMPLE 13.5 )

Let us see how the computational problem MAXMINOR = (MAX-
MINOR,,)en of determining a maximal nonsingular minor of matrices,
discussed in Section 13.7, fits into this framework. Intuitively, for each
n € N and matrix A € F"*" one should find some sets 1,6 {1,...,n}
such that the minor (= submatrix) of A with row indices from [ and
column indices from J is a maximal nonsingular miner; i.c., it is a non-

singular square matrix, and A has no nonsingular minors of larger size.
Formally, MAXMINOR,, is the set of all functions

g: F**n —y BY BV

(with N = {1,...,n}) where 9(A) are the row and column indices of a
maximal nonsingular minor of A, for all A € F**"_ We have to agree
on some coding of g(A) over B: one possibility is a string (y,...,yn,
Zyeeoy2p) € B withi € 1 < o, =T,andj€J ¢ z; =T. As
a specific example, consider

iR 2
A=|1 1 -2|eQVs,
2 2 0

The last row of A is the sum of the first two rows. In our formalism, the

1G] ; K . :
fact that y g |52 maximal nonsingular minor of A is expressed as

follows:

(A, TTFFTT) € MAXMINOR;.

An arithmetic Boolean circuit solving MAXMINOR would compute, on
any input A € F"™ " some output Ja(A) = (m,y...ymny G1y..liCa) €
B2, and the requirement is that indee Ja(A) describe a maximal non-
singular minor of A. Natural algorithms, such as the ones to be discussed
in Section 13.7 for this and similar problems, will compute a “natural”
candidate among the g(A)'s, e.g., the “lexicographically first maximal
nonsingular minor”.
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o= O'n) ‘ 5 = \ :
( generates in polynomial time a description of the labels anc

input n in unary, s - ; oo
connections of a,. A further complication for us is that we have t

untformity of field constants. For this, we :'r.‘qu?rc “. puly‘nmnm:b-I:l:::;:(‘l};tn';;lg
machine that, on input n, produces a polynomial-size nnt..lu:llc 11(. 5, (.ML m:;
whose only inputs or constants are the iup.ul.s to ey, and 1, .m‘ 'wtu :;Cd : 1
are the constants used in a,. (Often, 1 will be the only con:alt.m u ;Limnl
Furthermore, we have to use the degree deg gy of a I“c_?{_mj%(i- I - 1.tc
function gn. If gn = (F™, k) with h, € o TS I(‘ml;al:.t.::“({.:o:ﬂ. mzc
polynomial, then its degree is simply Flw (](?gl'vv. of ij.]. .‘ln ‘L.l‘[? :,;]m'c‘h.y; rU;
we require a deep generalization of this notion from algebraic ge ry;
discussions, see Strassen [50] and Heintz [30]. . Eee
Here are now some complexity classes ol importance to paraliel i

melic computation.

Pr = [(g=(gn)nen: 3 P-uniform a= (e¥n)nen cmn[{)u]l.ing g with
d S{a,) =nW and degg, =n a5
Nck = {¢9=(9n)nen: 3 P-uniform a = (ctn)nen computing g
B e njng

with S(ay) = n?Mand D(a,) = O(log* n),
and deg g, = n°M}, for any k € N,

rek
NCr = UpenNCE- - |
Here, g stands for a computational problem, and a for a family of arithmetic
2 S )

Boolean circuits. ’ ‘ .
The arithmetic complexity classes defined above are analogues ul'lt::
Boolean classes NC*, defined as the set of Boolean functions C%I;;l;mi-m y
o : i e rin-
log-space uniform Boolean circuits of depth O(log™ n) and size n ; ut |
el ;- 1 P is defined by polynomial size
put size n. Also, NC = J oy NC*, anc is de i
o K i ¢ Jasses —an
n?M only. Nick Pippenger [44] introduced these Boolean classes [ .
acronym for “Nick’s class”, coined at Toronto where he was then working.
'NC*'(‘P uniform) and NC(P-uniform) are obtained by the more generous m;;
| . e e elaveps T ' NC‘
tion of P-uniformity, which we use for our arithmetic classes. lhlnr C
'\'.C{P uniform), and Cook [12] conjectures that inequality holds. For any
) L

field I, we have NC(P-uniform) € NC, and similarly for the other classes.
1eka I, & -
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In Boolean circuit complexity, another model of importance is the un-
bounded fan-in Boolean circuit, where V- and A-gates may have any number of
inputs. Restricting the depth to O(log* n), for some k € N, the size to n®M"),
and requiring uniformity, one obtains the complexity class AC*. This acronym
stands for “alternating class” and comes from the fact that, for £ > 1, it can
also be characterized by alternating Turing machines using space O(log n) and
alternation depth O(log* n). We clearly have NC* C AC* C NC**', One of
the few separation theorems in Boolean complexity theory is the breakthrough
result AC°CNC! of Furst et al. [19] and Ajtai (1]; the parity function is in
NCy., and they show that it is not in ACY.

If we allow unbounded fan-in A-gates, but only V-gates with fan-in two,
we obtain the classes SAC* and SAC (for “semi-AC"). Borodin et al. [7] show
that one obtains the same classes with unbounded fan-in V and bounded A.

We Lake the latter model as our template for the arithmetic case. A semi-
unbounded fan-in arithmetic Boolean circuit o is like an ordinary arithmetic
Boolean circuit, except that the + and V-gales are allowed to have arbitrary
fan-in. The depth of a gate with fan-in k is 1, and its size is k — 1. Then,
as usual, D(a) is the depth of a deepest path in a, and S(a) the sum of the
sizes of all gates in a. These circuits lead to the following complexity classes.

SACE = {g= (9n)nen: 3 = (an)uen of semi-unbounded fan-in
computing g with S(a,) = 22", D(a,) =
O(log* n), and degg, = n?MY, for any k € N,
SACE = (Jpen SACE.

The circuit families have to be P-uniform. We clearly have the following
hierarchy of complexity classes: -

NC}. C SAC. c NCL C ..
NCy € SACE C NCH! € .- NCr = SACy C Ps.

Whenever one has such a hierarchy, one of the first (and usually most difficult)
questions is: Does it collapse or not? Le., is NC?Z(;SAC"QNC;‘.“ for all k7
Is NCrGPr? Throughout this chapter we have warked at the low end of this
hierarchy, within NC%,

Only one difference is casy to sce: NCY. # SAC®. We have SUM € ACY,
and by Theorem 13.1 (3), SUM,, = z; +--- +z, requires depth at least log, n
on arithinetic Boolean circuits with fan-in two, and so is not in the trivial
class NCY.,

We define a reduction between two problems f = (fu)nen and =

(9n)nen to be a family (e, )nen of arithinetic Boolean circuits o, of constant




608 Chapter 13. Parallel Linear Algebra

depth and polynomial size n2) | with a, computing f,. As gat.‘o:j' we all::-.;
in a,, the usual arithmetic and Boolean gates, as above, plus gntlcb {:r‘n‘npif rl 1[3
some g;. Furthermore, both the +-gates and Lhu. V::g;s.tv.s may :‘tw:. '.]11‘1 :ut:‘“
trary number of inputs. If such an “arbitrary l';u.|—m -pate m‘l:m l::u;;:.:, T: 1

for g; has k inputs, we define its size L‘o be ma.\:{_;,“k! - l,iuul 1LI:-: :1 ep 11' ,ltiw;,in-.
(This agrees with the previous definitions for Ehc ?muu-y 4, '.\‘:l.-; on }‘ l. s
puts; the size comes from the lower bound of Exercise 13.1.) I[:m. 14 re u(.ﬂ :
exists, we write [ <p g: [ is reductble to g. Furthermore, f =.p g. ‘mcans 11
f <pyand g <p f;then fand g are equivalent. O!u- ambiguity 1.-’LI|InlL g,l,, -
as_a. relation—may not have a single, but many possible answers. We stipulate

orrect i st result.
that for any correct answer to any g, a correct answer for f must re

EXAMPLE 13.6 ‘ 5 -
PROD <p DETERMINANT. Consider the circuit oy, mLh'mpuL By
T, and am constant 0, which produces an n x n-matrix A with ¢y,..., %,
on the diagonal and zeroes elsewhere, and then calls DE_TERMINAI?IIT;
with input A, The output is PROD,,. The depth of this reduction is 1,

and the size n? — 1.

Intuitively, “f <p ¢" means that f is not harder than g. Il we find a

ly, < : o .

good algorithm for g, then we automatically obtain a good n}bnrltlu‘n for f
On the other hand, a lower bound on the complexity of f translates into one

for the complexity ol g.

THEOREM 13.10

Lel IV be an integrel domain.

1. Reducibility is a partial order.

Equivalence is an equivelence relation. :

3. If f < g and g can be computed in depth O(log n), for some
k> 1, and size nPM)  then [ can be comnputed at the same

a

(asymptotic) cosl.

The theorem is proven by taking a circuit family a = (cvn)nen f‘or. q,
plugging it into the oracle nodes calling g, in the reduction, and thus obtaining
a circuit family for f; we forego the details. )

If C is one of our complexity classes (or any set of problems), we say

that a problem f is complete Jor C il

1. feic,
2. VgecC g<f.
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Thus a complete problem is hardest within its complexity class.

An important result is that the iterated product of 3 x 3-matrices (see
Section 13.3) is complete for NC}. (Ben-Or & Cleve [4]).

The two main algorithmic results in this chapter, namely the computa-
tions for determinant and rank of matrices, can be summarized as follows.,

THEOREM 13.11
Let F be a field. Then ;

RANK y C DETr C SAC}. C NC%.

PROOIP

The first inclusion is in Theorem 13.8 (1). For the second one, we
check that MATPROD € SACY. and ITMATPROD ¢ SAC}.. The claim
then follows from Algorithin Characteristic Polynomial, using The-
orem 13.4. : .

The following problems are unsolved.

OPEN QUESTION 13.2
1. Is DETf = SAC)?
2. Is SAC) # NC%.?

REMARK 13.1

Qur arithmetic circuits are the arithinelic analogues of Boolean circuits,
and one reason for choosing them for this chapter is their conceptual
simplicity. Another highly popular model of parullel Boolean computa-
tion is the PRAM. Its analogue, the arithinetic PRAM, has arithmetic
values in its memory cells, and each processor can perform an arithmetic
operation on two of those values in one time step. (Similarly, one de-
fines arithmetic Boolean PRAMSs, with the same instruction set as our
arithmetic Boolean circuits.) There are various possibilities to regqulate
the read/write conflicts on Doolean PRAMs. Similarly, the arithmetic
PRAMs come in several flavors; we do not discuss this here.

For u comparison of the two models, it is easiest to use levelled arith-
metic circuits, where each gate has an integer associated to it, its level,
and inputs to a gate come only from previous levels. The width of a lev-
elled arithmetic circuit is the mazimum number of arithmetic gates at
each level. Then an arithmetic circuit can be simulated by an arithmetic
PRAM, and, for a given input size n, an arithmetic PRAM by an arith-
melic circuil, with circuit depth corresponding to PRAM time, circuit




610 Chapter 13. Parallel Linear Algebra

size corresponding to PRAM memory, and ciremit width corresponding

to the number of PRAM processors.

The simulation question is not so clear, however, when we constde

circuit families, complerity classes, and the various notions of circuit

untformity.

13.9
Further Results

In this section, we give pointers Lo various results in parallel algebraic
complexity theory, without proofs.

Erponentiation turned out to be a very interesting problem for |::11'al-lc|
computation: computing a® in parallel, where a € I is in the ground ll{.’"““"‘
and b € N. This problem and related tasks are used in many nlgurltln.ns,
e.p., factoring integers, primality test, eryptographic protocols, and factoring
polynomials over finite fields. .

The standard sequential algorithim of “repeated squaring” has linear
depth n when b is an n-bit integer. The problem looks unamenable to par-
allelization, and Kung [39] shows with a degree agrument that indeed over
an infinite field no arithmetic cireuits with less than the disappointing linear
depth are possible. The argument seems to fail over finite fields, where one can
use Fermat's Little Theorem (a? = a for all ¢ in F,, the ficld with ¢ elements)
to compute the values of large powers at no cost. However, von zur Ga-
then [24] shows that this is the only obstacle: D(a) > min{log, {J,logz(q —‘{))}
if 1 < b < q and @ computes bth powers in F,. It was a big surprise when Fich
& Tompa [17) proved in a slightly different—yet perfectly rc:L'iO]lil.llI(!""l'[lO(.iCl
that the problem does have a fast parallel Htﬂ.lﬂ,i(_)ll in an important special
case (large finite fields of small characteristic). This leads to the 1';11.].101‘ f;hock-
ing observation that for this (and some other) problem arithmetic (:1:'cu'1L5 are
not the appropriate model of computation (von zur Gathen & Seroussi [29]}
The use of “normal bases” in finite fields leads to a natural setting in which
the parallel complexity of exponentiation can be determined exactly (von zur
Gathen [27]).

Eberly [16] solves various problems (such as the determinant, charac-
teristic polynomial, and solution of systems of lincar equations) for banded
n % n-matrices of bandwidth b in depth O(log nlogb) and size n°0); in par-
ticular, for constant bandwidth he has optimal depth O(logn). Kaltofen 'ct
al. [35, 36) prove that the Hermite and Smith normal forms of polynomial

13.9. PFurther Resulls G11

matrices can be computed in probabilistic NC. These normal forms contain
much information about the (geometric) structure of the linear mapping as-
sociated with a matrix.

Many problems in polynomial arithmetic can be solved in NC%, for a
field F, such as the ged (Borodin et al. [8]), more generally all entries of the Ex-
tended Euclidean Scheme of two polynomials, various interpolation problems
(rational, Hermite), partial fraction decomposition (for a given factorization
of the denominator), Chinese remainder algorithm, and Padé approximation
(von zur Gathen [22]). One of the most important unresolved issues is the
status of the Boolean analogue:

OPEN QUESTION 13.3
Is the ged of integers in (Boolean) NC'?

It is widely conjectured that NC # P. However, Valiant et al. [52]
showed that for polynomials over a field F we have “NC% = Pg”: polynomial
families with polynomial degree and polynomial-size arithmetic circuits can
be computed on arithmetic circuits of depth O(log? n). Miller et al. [40] give
a different version of that result, and Kaltofen [34] extends it to rational
functions; see Kaltofen's Chapter 16 in this book.

Reif [46] and Beame et al. [3] showed that (Boolean) problems like di-
vision with remainder and iterated product of n-bit integers can be solved in
optimal (P-uniform) depth O(logn) on Boolean circuits. Eberly [16] shows
similar results for polynomials over a field. This leads to optimal-depth solu-
tions for the exponentiation problem in finite fields of small characteristic (von
zur Gathen & Seroussi [29]), for inversion in finite fields (von zur Gathen [26])),
and for the Boolean exponentiation problem of computing a® mod 2", where
a,b € N are n-bit integers (von zur Gathen [24]).

A central problem in computer algebra is the factorization of polyno-
mials. Over finite ficlds of small characteristic, the problem is in NC?, but
in general it is at least as hard as exponentiation (von zur Gathen [21]).
Kaltofen [32] has an algorithmn for absolute irreducibility. The polynomial-
time sequential method over @ uses “short vectors in Z-modules”, which is
conjectured to be P-complete; the (possibly “casy”) integer ged problem is
reducible to a special case of this (von zur Gathen (21)).

A vast generalization of factoring polynomials is the question of deter-
mining the roots of a system of polynomial equations, or, more generally,
of deciding first-order sentences in the theory of fields. Ben-Or et al. [4],
Davenport & Heintz [15], and Fitchas et al. [18] contain parallel results for
algebraically closed fields (like €) and real closed fields (like R).

P
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Strassen [50] introduced the degree as an important tool in algebraic
complexity theory (see Section 13.8). For an arithmetic circuit e computing
a single polynomial f, one has D(a) > log, deg f (I{ung [39]); this general-
izes to a set of polynomials or rational functions, with the notion of degree
from algebraic geometry. Unfortunately, the argument breaks down for our
piccewise rational functions, and one can show that the best result here is
D(a) > log, log, deg f (see von zur Gathen [23]).

Throughout this chapter, we have implicitly assumed that an almaost un-
bounded (namely, polynomial) number of processors is available. In practice
today, however, one can count only on a limited number of processors, and
processor-efficient parellel algorithms are important, which use small parallel
time (say, (logn)2(1)) and not (many) more processors than the best sequen-
tial algorithm known; this question is briefly addressed at the end of Sec-
tion 13.4. Kaltofen [34] has a result in this spirit on the ged of polynomials,
and Ialtofen & Pan [37] achieve this goal (up to logarithmic factors) for the
solution of systems of linear equations. Pan & Reif [12, 43] started an interest-
ing line of work for linear algebra; they work in a different “numerical” model
where one has access to the individual bits of the real (or rational) inputs.

Let M(n) be the number of PRAM processors required to multiply
an n x n dense matrix in O(logn) time using M(n) processors. For well-
conditioned matrices, Pan and Reifl use a Newton iteration to efficiently com-
pute the matrix inverse within high accuracy in O(log® n) time using M (n)
PRAM processors. Kaltolen and Pan developed similarly efficient PRAM
algorithms for matrix inverse, determinant, and rank over general ficlds.

Cheriyan and Reif [10] give output sensitive (where the complexity
depends on the output) PRAM algorithms for various classes of algebraic
problems. They present a randomized algorithm for computing the rank
r of an n x n matrix which runs in parallel time O(logn + log®r) using
(n? + M(r)) ]ogom n processors. They also present randomized algorithms
for finding a maximum linearly independent subset of rows that run either in
parallel time O((logn)log® r) using (n? + rM(r))log?") n processors, or in
parallel time O(log n + log? r) using (n® +nM () log®™) n processors. As an
application, they give an output sensitive algorithm for computing greatest
common divisors (GCD) of polynomials. Given two polynomials of degree n,
the degree r of the polynomial GCD is computed in randomized parallel time
O(log n+log® r) using (n?/r+r2) log®") n processors, and the GCD as well as
the extended GCD are computed in randomized parallel time O((log n) log? r)
using (n2/r 4+ r*) log®" n processors.
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A different set of problems concerns permutation groups. As an ex-
ample, the membership problem is: given some permutations my,...,m, @
on n letters, in some standard representation, is o in the subgroup gen-
erated by my,...,m? A substantial line of research, culminating in Babai
et al. [2], shows that the membership problem and related questions are in
(Boolean) NC.
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