on

J. VON ZUR GATHEN & M. GIESBRECHT (1990). Constructing Normal Bases in Finite Fields. Journal of Symbolic Computation 10, 547-570. ISSN 0747-7171. URL

http://dx.doi.org/10.1016/S0747-7171(08)80158-
This document is provided as a means to ensure timely dissemination of scholarly  are maintained b

and technical work on a non-commercial basis. Copyright

J. Symbolic Computation (1990) 10, 547-570

Constructing normal
bases in finite fields

JOACHIM VON ZUR GATHEN
MARK GIESBRECHT

Department of Computer Seience, University of Toronto
Toronto, Ontario M5S 1A4, Canada
gathen@theory.toronto.edu
mwg@theory.toronto.edu

(Received 6 June 1989)

An efficient probabilistic algorithm to find a normal basis in a finite field is presented. It
can, in fact, find an element of arbitrary prescribed additive order. It is based on a density
estimate for normal elements. A similar estimate yields a probabilistic polynomial-time
reduction from finding primitive normal elements to finding primitive elements.
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1. Introduction

7

If F, C Fyn are finite fields, a € F,n, and the conjugates a,a%,a%,... ,a?""" of a form
a basis for Fyn as a vector space over Fy, then this is called a normal basis. We call & a
normal element (of Fyn over F,).

Normal bases are useful for implementing fast arithmetic in Fgn, in particular expo-
nentiation. Of special interest is ¢ = 2 and n reasonably large; as an example, the Diffie &
Hellman key exchange is based on exponentiation in F». Algorithms and pessible MOS
implementations are given in Laws & Rushforth 1971, Wang et al. 1985, Beth et al. 1986,
Agnew et al. 1988, Stinson 1990.

The basic assumption in that work is that computing gth powers in Fgn is for free (i.e.,
of negligible cost compared to a general multiplication in Fyn; only q = 2 is considered).
The assumption can be justified if a normal element is given, since then for an arbitrary
U = Fogicn Ui0? € Fon, with uo,...,us—1 € F,, we have

u? = (Z ot o= "%" i
0<i<n

with u_q = #,_7. In other words, the coordinates of u? are a cyclic shift of those of u.
We also consider a natural generalization of normality, that of additive order (Ore 1934,
see van der Waerden 1966, Lenstra & Schoof 1987). Consider the Frobenius automorphism
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o :Fgn — Fyn of Fyn over Fy with o(a) = of. For f = ¥ fizk € F,[z], we consider the
F,-linear map f(o) =3 fio* : Fpn — Fgn. The additive order Ord(a) € F,[z] of o is
defined as the monic generator of the principal ideal {f € Fy[z] : f(o)(a) = 0} in F,[z].
Since '

(z" = 1)(o)(a) = (c" —id)(a) =" —a =0

for all a € Fy, Ord(a) is a divisor of 2" — 1. An element a € Fgn is normal over F if and
only if Ord(a) = z" - 1.

This paper addresses the question: how can we find a normal element efficiently?
More generally, we consider how to find an element of any given additive order. Hensel
(1888) pioneered the study of normal bases for finite fields and proved that they always
exist. We use his algorithm in Section 2. Eisenstein (1850) had already noted that normal
bases always exist. Hensel, and also Ore (1934), determine exactly the number of these
bases, and Ore develops the more general concept of additive order. Ore’s approach is
developed into more constructive proofs of the normal basis theorem in several textbooks
(for example, van der Waerden 1966, Section 67, and Albert 1956, Section 4.15); these all
use some linear algebra calculations. Schwarz (1988) has given a new proof along these
lines, and several recent papers have translated this approach into algorithms. Sidel’nikov
(1988) deals with the case where n divides one of p (the characteristic of Fg), g+ 1, or
¢ — 1 and Stepanov & Shparlinsky (1987) with the case ged(n,q) = 1 or g > n. Semaev
(1989) solves the general problem; also he observes that the general case reduces to the
case where n is a prime power. These three papers reduce in deterministic polynomial time
the construction of a normal basis to factoring polynomials; hence—at the current state
of the art for factoring—they yield polynomial-time algorithms (requiring (nloggq)®()
operations in Fy) that are probabilistic in general, and deterministic if ¢ is small (requiring
(nq)°(™) operations in F;). The best general result to date is Lenstra’s (1989) deterministic
polynomial-time algorithm, given as a subroutine in his interesting solution of a more
difficult problem, namely the construction of explicit isomorphisms between finite fields
of the same cardinality!. Lenstra’s assumptions amount (within deterministic polynomial
time) to requiring an irreducible polynomial of degree n as irput. His sufficient condition
is also necessary since an irreducible polynomial is computed.

We assume that a description of F ¢ is available; if ¢ = p™ for some prime p and integer
m this consists of the binary representation of p, and of the coefficients of some irreducible
monic polynomial w € Fp[z] of degree m with F; = Fplz]/(w). This allows us to perform
operations in F, efficiently and, unless otherwise noted, we count operations in F, in the
analyses of our algorithms. Lenstra (1989) has a more general notion of “explicit data” for
Fgn, allowing an arbitrary “multiplication table” in some basis of Fgn over F,. One can
then recover an irreducible polynomial w as above using linear algebra, or else simulate
arithmetic in Fon by O(n?) operations in F,.

Along with a description of F,, the input consists of a description of Fyn over F,,
i.e., a monic irreducible polynomial & € Fo[z] of degree n, where Fyn = Fglz]/(h). This
description then consists of n elementg. of F;, and the goal is an algorithm using a number
of operations in F, which is polynomial in n and log g. We present two algorithms for our
problem, in Sections 2 and 4. Both are based on well-known properties of normal bases;
Lidl & Niederreiter (1983) is our standard reference.

The first algorithm simply takes a random element in F¢n and tests whether it is normal

!Lenstra ( 1989}, and a first version of this paper appeared independently in May, 1989
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over F,; the test is from Hensel (1888). It works in expected polynomial time if there are
sufficiently many normal elements. Section 3 is devoted to showing that indeed these
are plentiful; we prove analogues—for polynomials over finite fields—of some standard
bounds on number theoretic functions. The density of normal elements in Fgn over F, is
S(1/log, n) for n > ¢*. Given a normal element and a divisor g € Fylz] of 2™ — 1, we note
that it is easy to construct an element of Fyn of additive order g.

In Section 4, we adapt the usual linear algebra approach for finding a normal basis of
F,» over F; to the problem of finding an element of prescribed additive order g € Fy[z].
It requires as additional input the complete factorization of g in Fg[z]. This is a stronger
assumption than Lenstra’s of having an irreducible polynomial in F, of degree n (for
g=z" — 1), but the state of the art is identical for both requirements: these data can be
fumnished in random polynomial time, or in deterministic polynomial time assuming the
Extended Riemann Hypothesis (ERH), or deterministically in time VP (nlogq)?M), where
2 is the characteristic of F, (see Section 4 for references). We obtain a polynomial-time
algorithm for an element of additive order g which is probabilistic for arbitrary values of
¢ and n, and deterministic for “small” ¢ < n (in fact, charF, = n201) js sufficient), or if
one assumes the ERH.

An element o € Fyn is primitive if and only if every non-zero element of Fyn is a
power of . No (probabilistic) polynomial-time algorithm is known to test primitivity, or
%o generate a primitive element. For every n and ¢, there exists a primitive element of Fn
which is normal over Fy: a primitive normal element (Lenstra & Schoof 1987). Stepanov &
Shparlinsky (1989) give a deterministic reduction from finding primitive normal elements
to finding primitive elements; their reduction uses time linear in log ¢, but exponential in
7. In Section 6, we give a probabilistic polynomial-time (in nlog¢) reduction from finding
a primitive normal element in Fgn to finding a primitive elements in Fgn. This is based on
further estimates of finite field analogues of number-theoretic functions, given in Section 5.

We think that Lenstra’s comment “Although the algorithms presented in this
[Lenstra’s] paper are not necessarily inefficient, I do not expect that in practice they can
compete with the probabilistic algorithms ...” also applies to the methods of Section 4,
and expect methods avoiding linear algebra, such as the algorithm of Section 2, to perform
better in practice.

At a referee’s suggestion, we summarize the results of this paper, as follows:

1. a fast algorithm in Section 2 for computing a normal basis of degree n over F,, re-
quiring an expected number O (n? log ¢) operations in F, with fast arithmetic, and
an expected number O(n®logg) operations in Fg with “naive” arithmetic; this com-
pares favourably with the previously known O(n®*¥logg) and “naive” O(n*logq)
operations in F, respectively, based on linear algebra;

2. generalizations of both the fast probabilistic algorithm and the slower deterministic

algorithm from finding normal elements to finding elements of arbitrary additive
order;

.

3. a (random) polynomial-time reduction of finding primitive normal elements to find-
ing a primitive element;

4. (high) density estimates for normal and primitive normal elements (Sections 3, 3,
and 6).
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While the algorithms themselves are easily deduced from the literature, our main technical
tool, the density estimates, are new.

2. A probabilistic algorithm

We denote by v(n,g) the number of normal elements in Fqn over Fy. For g,k € Fy[z]
with h # 0, we denote by g rem h € F[z] the remainder of g on division by A: (g rem k) =
g mod h and deg(g rem h) < degh. The ged of two polynomials (not both zero) is the
monic polynomial of largest degree dividing both polynomials.

Let h € Fy[z] be monic irreducible of degree n, Fon = Fo[z]/(R), @ = 2 mod h € Fyn,
and (1,e,0%,...,a™ 1) the standard basis of Fgn over Fy. We want to find a normal basis
of Fgn over F,. In this and the next section, we discuss the following algorithm, based on
Hensel’s (1888) criterion.

Algorithm A.

Input: A description of F,, a monic irreducible polynomial h € F,[z] of degree n, an
estimate N < »(n,q), and a confidence parameter ¢ > 0.

Ouiput: An element « € Fy[z]/(h) = Fyn normal over Fg, or “failure”.

1. Set k = [loge/ log(1 — Ng=™)], and set a counter ¢ to 1.

2. Choose a € Fyn = F,[z]/(h) at random.
3. For 1 £i < n, compute 3; = af' € Fgn.
4. Set w = (Locicn Biz') € Fyn[z], and compute g = ged(w, 2™ — 1) € Fyn[z].

5. If g = 1, return & and stop. Otherwise increase ¢ by 1. If ¢ < k, go to step 2, else
return “failure” and stop.

To estimate the cost, let M : N — R denote a “universal” cost of multiplication,
i.e., be such that two polynomials of degree at most n over a ring R can be multiplied
in O(M(n)) arithmetic operations in R, and two n-bit integers can be multiplied with
O(M(n)) bit operations. We can choose M(n) = nlognloglogn (Schénhage & Strassen
1971, Cantor & Kaltofen 1987). If g,h € Fq[z] are polynomials of degree at most n,
then g rem h (if & # 0) can be calculated in O(M(n)) operations in F,, and ged(g, h) in
O(M(n)logn) operations (see Aho et al. 1974, Section 8.9).

It is convenient to ignore logarithmic factors using the “soft O” notation, introduced
by von zur Gathen (1985) and Babai et al. (1988):

9= 07(hy < 3k g = O(h(logh)*).

THEOREM 2.1. Algorithm A works correctly as described in “Output”; failure occurs with
probability at most €. It uses at most k random choices in Fon, where k = [loge/ log(1 —
Ng™)], and O(M(n)(M(n)logn + nloggq)), or O"(n®loggq), arithmetic operations in F,
per polynomial tested, for a total of O (kn? logq) operations.
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Proor. Hensel (1888) proves that a is normal if and only if g = 1 in step 4, and hence
an eventual output «a is correct (see Lidl & Niederreiter 1983, Theorem 2.39).

By assumption N' < »(n, ¢), and thus the failure probability is at most (1- Ng=")* < ¢,

We can compute all §; in steps 3 by repeated squaring in O(nlogg) operations in Fyn.
The ged in step 4 can be calculated in O(M(n) logn) operations in Fyn. One such operation
can be simulated by O(M(n)) steps in Fy, for a total of O(M(n)? logn) operations in F,.
O

Recall from the introduction the notion of additive order: if ¢ is the Frobenius map in
Fy (mapping an element of Fyn to its gth power), then the additive order Ord(a) of any
@€ Fyn is the monic polynomial g € Fy[z] of minimal degree such that g(o)(a) = 0.

ProPosITION 2.2. Given a description of F,, an irreducible polynomial h € F;[z] of degree
n, an element a € Fyn = Fy[z]/(h) normal over F,, and g € F,[z] dividing z" — 1, we can
find an element B € Fyn of additive order g with O(nM(n)logq) or O7(n? logq) operations
inF,.

Proor. Simply compute 8 = ((z" - 1)/g)(c)(a) € Fyn. The element 8 is certainly
annihilated by g(o) since g(7)(8) = (2™ — 1)(¢)(e) = 0. To see Ord(f) = g, suppose
h(2)(B) = 0 for some k € F,[z]. This implies (h(z" ~ 1)/g)(¢)(a) = 0. Since all annihila-
tors of & are divisible by 2™ — 1, g must divide h. If we compute a? for 0 < i < n—deg g by
repeated squaring, then 8 can be calculated with O(nlogg) operations in Fqn. Each oper-
ation in Fgn can be simulated with O(M(n)) operations in F, for a total of O(nM(n) log q)
or O7(n?loggq) operationsin F,. 0O

How can we find the required estimate N for v(n, ¢)? Corollary 3.6 below gives a gen-
eral lower bound on ¥(n, ¢), and Corollary 3.7 the resulting upper bound on the computing
time. For an exact calculation, we let fi,..., f, € F,[z] be the distinct irreducible factors
of 2™ — 1 in Fy[z], and n; = deg f;. Then

v(n,g) =q"(1-q¢™)--- (1=¢7™),

since Lidl & Niederreiter (1983), Theorem 3.73, gives ¥(n,q)/n as the number of normal
polynomials. We now discuss two ways of calculating v(n, ¢) exactly, an “arithmetic” and
a “Boolean” one. Write n = n’p®, with e € N and p = charF, not dividing n’. Then
z"—1= (z™ —1)*", and the (nonzero) derivative n’z" =1 of 2% — 1 has no common factors
with z® — 1, so that 2™ — 1 is squarefree, and z" — 1 = [Mi<i<s fi-

Set Ay = 2" — 1. Fori = 1,2,...,n', we compute g; = ged(2? — z,hi_q) and h; =
hi_1/gi. Then exactly deg g;/i many irreducible factors of z™ — 1 have degree ¢ (Lidl &
Niederreiter 1983, Theorem 3.20), and

v(n,g)=q¢"- J] (1-g)dessili o gn-n’ II (¢f - 1)dessits, (2.1)
1<ign! 1<i<n!

Of course, h; is either 1 or irreducible already for i = [n'/2] + 1.

PROPOSITION 2.3. Given m,n € N, a prime p, and a description of Fgn = F, = Fpm,

v(n, q) can be calculated in O(nM(nlogq)) Boolean operations, plus O(nM(n)logq) arith-
metic operations in Fgn.
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Proor. The arithmetic cost for the method sketched is O(nM(n)logg). The Boolean
cost is only O(lognM(logn)) to find e and n’, and O(n’M(nlogq)) for the integer product
in (2.1). O

(We now describe a different way to calculate v(n,g). Write n = n'p® as above. For any
divisor d of n’, let 7(d) be the order of ¢ modulo d, i.e., the smallest positive integer such
that ¢"(@) = 1 mod d (with 7(1) = 1). Furthermore, let @, € F,[z] be the dth cyclotomic
polynomial, and ¢(d) the Euler totient function, i.e., the number of integers between 0
and d — 1 that are relatively prime to d (with ¢(1) = 1). Then

Iﬂ.r sl H Sad,
d|n’
and pg has ¢(d)/7(d) many distinct monic irreducible factors, each of degree 7(d) (Lidl &

Niederreiter 1983, Theorems 2.45 and 2.47). Since ™ —1is squarefree, these factors of
z™ — 1 are all distinct, and

v(n,q) = q* H (= Q-T(d))é{d)h(d) i qﬂ—n’ H (q'r(d') 91 1J¢fd)ff(d)1 (2.2)
d|n' d|n'
where the product is over all divisors d of n’ with 1 < d < n'.
To calculate this expression, we proceed as follows.

1. Compute the prime factorization n’ = wf‘ ---m$* of n’, with distinct prime numbers
T1,..., 7"t and positive integers éy,..., 6.

2. Compute ¢’ = ¢ rem n’.

3. Foreach1 < ¢ < tand 2 < j < §;, determine first T(7;) = ords(¢’) and ¢(m;) =

mi—1, and then r(r) = ord_j(¢’) and ¢(x}) = (mi—1)x!™*. [Note that ged(g, ™) = 1,
and (r]) is either r(x{™") or mir(x?™") for all 4, ;.

4. For each divisor d = #{ -+ -7 of 0/, with 0 < ¢; < §; for all j, compute #(d) =
é(wil) = ¢(ﬂ':') and T(d) = lcm(T(r{l)s e -17(17:‘))'

5. Compute v(n, ¢) from (2.2).

PROPOSITION 2.4. Givenm,n € N, a prime p, q=p™, and e > 0, v(n,q) can be calculated
in O(n*M(nlogq)) Boolean operations.

Proor. We use a trivial method with at most Va trial divisions to factor an integer a,
and factor each 7; — 1 in step 3 to calculate 7(m;). Step 1 and these factorizations can be
done with O(y/nM(logn) - t) bit operations, and step 2 with O(M (log(ng))) operations.
The remaining calculations in steps 3 and 4 only require arithmetic operations on integers
with O(logn) bits, and thus time (logn)?("). The number of divisors of 7’ is O(n®) for
any € > 0 (Hardy & Wright 1962, Theorem 317). The dominating cost is in computing
the products and powers of step 5. These can be calculated, via repeated squaring, with

¢(d)
0 (log(n - n;‘] 4 ; (logr(d) + log @)
|n'
or O(n®) operations on integers with at most nlogg bits. O
This result avoids the arithmetic cost of Proposition 2.2. Note that we work in a

different model now, not using arithmetic in F, at all, but only Boolean operations with
a binary representation of ¢ and n as input.
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3. The probability of being normal

Let ¢ be a prime power and n > 1. We will show that a randomly chosen element of
Fgn is normal over F, with probability Q(1/ log, n).

We denote by I, the set of monic irreducible polynomials of positive degree in F,lz].
For m > 1, let Ny(m) be the number of monic irreducible polynomials of degree m in
F,[z], and

g™ (g™ 1)
m m(g—1)

(Lidl & Niederreiter 1983, Exercises 3.26 and 3.27). For f € Fqlz] and f ¢F,, let
|f] = #(Fql2]/(f)) = ¢?&/

be the number of elements of the residue class ring of F,[z] modulo f. The analogue of
Euler’s totient function for integers is the number ®4(f) of polynomials in F,[z] of smaller
degree than f € F,[z] which are relatively prime to f. This is the number of units in
Fqlz]/(f), and (Lidl & Niederreiter 1983, Lemma 3.69 and Theorem 3.73)

2,(N=1ATI-1gI™),

glf (3‘2)
v(n,q) = $,(z™ - 1).

< Nm< L (3.1)

Our objective is to give a lower bound of Q(1/log, n) on &,(f)/|f| for an f € F,[z] of
degree n. This immediately shows the required lower bound for normal elements.

We will make use of the following lemma adapted from Apostol (1976), Theorem 3.2(a).
LEMMA 3.1. Forz > 1

1
Z;ﬁlogcz+0+1/z

ns<zr

where C =2 0.577216 is Euler’s constant.

Proor. Using Euler’s summation formula (see Apostol 1976, Theorem 3.1), we find

Tl 8 il ol
n - 1 t z

n&z
tt_ o S oo -
< logz - [ —tz—m-dt+1=lug=z+l—[ ET}-‘idHf g,
1 * 1 z i
¢ — |t /°°1 ¢ — |t 1
< — _ —_dt = e — i
< log,z+1 /1 72 dit + b tedt log,z + 1 j: 72 dt+z
=logez+C+l,
o
where

% ¢~ |1 : 1
C:lhi/: 72 dt:IlLIgo(ZH—logeﬁ)

n<r

is Euler’s constant (see Apostol 1976, pp. 33). O
We will need the following two lemmas.
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LEMMA 3.2. If

V(g) = Z E ,dqd(:-u’

i22d21

then for any ¢ > 2 we have V(g) < ¢!

Proor. By expanding the sum we can write V(q) = U(q) + E(gq) where

U(g) = =

2

7+5+59+4+233+11+11+43
1292 ° 1243  120q* * 15¢5 * 504¢° * 56¢7 = 60¢% = 180¢°’

1 1
PO = X e < X
di>10 di =10

For n > 10 there exist less than n pairs (,d) € N? such that i -d = n. It follows that

E(g) < Z - :

9 ==

and that V(g) < ¢~*W(q), where W(q) = qU(q) + 1/(¢®(g - 1)). Since W is a decreasing
function of ¢ and W(2) = 321833/322560 < 1, V(¢) < l/qforallq>2. 0O

LEMMA 3.3. Let

= TLa-lg™.

Igls=
9€lq

For any = > ¢, we have

c-clg ¢
W(x)>logqx l—og'?:c

where ¢ = e~ ~ 0.56146 and C is Euler’s constant.

Proor. Let b = log, z. Since z > ¢, W(z) # 0 and we can consider the logarithm of

W(z):

log. W(z) = }_ log(1—gI™)= 3 Ny(d)log,(1-q%

lgl<= 1<d<bh
9€lq
g?log(1 - g9 ¢

2 Z “__E"_"__ E Zdiqdi

1<d<h 1<d<b i>1

1
==3 3 = >'E 2D s
51 15d<s dig?0=1) Gad 5 d>1 dqu(' 1

> —log,b—C—-b"1-¢!

using Lemmas 3.1 and 3.2 and ]og,(l —1) = - ¥is t'/i for any t < 1. This implies
W(z) > e~ exp(—g~! — b=!)/b, and using the fact that exp(u) > 1+ u for all u € R, we

see

W(I)>§(1—q-l—b_1)= C—C/Q_ q':2

log;z  logiz
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THEOREM 3.4, Let g be @ prime power, and let f € F,[z] have degree n > 1. Then
(N1 £1 =g If1 < n < g* then ®,(f)/|f] > 1/34, and if n > ¢*, then

o,(f) c _1_2—q‘1 1
|f] >logqﬂ. (l—q loggn)>lﬁlogqn’

where ¢ = e~ and C is Euler’s constant.

Proor. For the upper bound,

3}}{1 =Tla-1g) <1 1A,
alf

g€lq

and equality is achieved when f is irreducible in F,[z]. To show the lower bound, for

1<n<gq, )
$ 2 =
i - e~z Ta-a
alf glf
9€lq 9€lq
1
20— P2l-"Y 24
since (1 — u~!)* is an increasing function of u for v > 1,and ¢ > 2. If n > g, we write
8D fTa-wry=n.5,
| f] o
9€lg
where
AR=Jla-1g™, PB=TIla-ld™.
glf ol
gelg g€y
lgl<n lgl>n

We begin by examining P,, and write

P> J[(A-n"=(01-n"1y,

alf
g€lq
lgl>n

where v = #{g € I, : g|f, |g| > n}. Since
" =f12 I lal> IJ lgl > =,

als alf
g€lqg 9€lq
lgl>n

we find v < n/log, n and

n

n/log, n
Pg > (1 — l)

which is an increasing function of.n for fixed g. We divide our analysis of the case n > q
into two subcases: ¢ < n < ¢* and ¢* < n. When n > g then P, > (1-¢71)¢ > 1/4. For
a better estimate when n > g%, we use the fact that

1\ Tgew
(1——)”" S e :
n log, n
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which is obtained by raising each side to the power of log, n. Thus, for n > ¢*,

P,>1-

log, n’
‘We now bound the function P, for n > ¢ by observing

P=TIa-1g> TI (-1

g€lg g€lq
als lolgn
lgl€n

For ¢ < n < g%, this gives us
E___! !4__I3

Az I (-3 - (-3 0-2)70-5 7617

which is an increasing function of ¢, giving P, > 0.118 since g > 2. Thus, for ¢ < n < ¢*,
®.,(f)/1fl > 1/34. For n > ¢*,

B c—c/qg J t::g
log;n  login
by Lemma 3.3, so in this case,

@,(f) _ c—c/q c BRI
| £l -PI.P2>(logqn —Iogzn ! log, n
g-1 c 2c—cfq ¢ g-1 c 2c—c/q
] o e T > . 2 Koo
g logn login ' login g log,n logZn

This proves the first inequality claimed for n > ¢4. Since ¢ = ¢=C > 1 /2, and log, n > 4
when n > g%, we have

() _g-1 _e (1_ 2-1 )
| f] g logyn (q—l)]ogqn

g—1 e ( 2¢g—-1 ) 5 1
q log,n 4(g-1) 16log, n’
A similar lower bound also holds for the integer Euler function ¢, which we will make use
of in Section 6.

Fact 3.5. Forn > 3,

@(n) ¢ 1.41
> < [— i
n log, log, n log? log, n
where ¢ = ¢=C ~ 0.56146.

PRrOOF. From Rosser & Schoenfeld (1962), (3.41) and (3.42), we have

@(n) 1 ae ( ¢ ) c( cie
n >}\/c+c;/.\_,\ 1_)\2+c1c 2k 1‘,\_2)’

where A = log, log, n and ¢; = 2.5036. 0O

This brings us to our bound on the probability of being normal.
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COROLLARY 3.6. For ¢ a prime power and n > 1, the probability x = v(q, n)g~™" of an
element chosen randomly from Fyn being normal over F, satisfiesk < 1-q~1. Ifn < ¢4,
then k > 1/34 and, if n > ¢*, then

K>

=1
c i -q 1
log, n (1 1 log, n )>161‘::gqﬂ1
where ¢ = e=C and C is Euler’s constant.

PrOOF. Applying Theorem 3.4 with f = z"—1, and using the fact that x = ®,(z"-1)/q"
(Lidl & Niederreiter 1983, Theorem 3.73), the lower bound follows immediately. We see
from (3.2) that ®,(z™ - 1)/¢™ is maximized when z" — 1 has only one irreducible factor;
l.e., it is a power of  — 1 or, equivalently, n is a power of char F,. Thus we have

Bq(2" = 1)/¢" S By((z-1)") = 1-¢7,
and equality is achieved when n is a power of char Pyt &)

CorOLLARY 3.7. Let n,q € N, q a prime power, p = 1/34ifn < ¢*, and p=1/(16 log, n)
if n > ¢*. Then

(i) We can choose N = pq™ in Algorithm A. Then Theorem 2.1 holds with k <14
2p~1log, €1, which is O(log, €~ log, n) for n > ¢%.

(ii) Given a description of Fy and an irreducible polynomial of degree n in Fq(z], a normal
basis for Fyn over F, can be constructed by a probabilistic (Las Vegas) algorithm
with failure probability at most €, using O™(nlog, e!) random choices in F,, and
O7(n?log qlog, €~1) arithmetic operations in F, tfe< ¢,

(tii) Given only a description of F, and an integer n > 2, we can probabilistically con-

struct a normal basis for Fyn over F, using an ezpected number O7(n?logq) opera-
tions in F,.

Proor. We use the notation of Section 2. By Corollary 3.6, we have v(n,q) > pg™. With
N = pq", we have in Theorem 2.1

k-1 1 1 1 2

1 2
S S S _— < -
log. €71 ~ log, (&) " log(1+9) = p— & " p 2-5p "

since p < 1. This shows parts (i) and (ii). The algorithm of Rabin (1980) finds an

irreducible polynomial of degree n in an expected number O"(n?logg) operations in Er.

We then use such an irreducible polynomial with Algorithm A and € = ¢~'. This will find

a normal element @ € Fyn over F, in an expected number O(n?logg) operations in F,.

Then a,a?,...,a?" ", forms the desired normal basis of Fyn over Fy, and this basis can

be computed from a using repeated squaring, with O"(n?logg) operations in E.o O
Applying Proposition 2.2 immediately yields the following.

COROLLARY 3.8. Given a description of Fq, @ monic irreducible polynomial h € F,(z] of

degree n and a divisor g € F,lz] of 2™ — 1, we can probabilistically find an element of
additive order g in Fyn with an ezpected number O~ (n? logq) operations in F,,.
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4. A deterministic construction

In this section, we implement a different polynomial-time algorithm for finding a normal
basis of F¢n over F,. As in the algorithm of the previous section, we assume that we have
a description of F, and a monic irreducible polynomial 2 € F,y[z] of degree n, and set
F;n = Fy[z]/(h). Furthermore, we assume we have a complete factorization of #™ — 1.
We want to find a normal basis of Fyn over F;. When ¢ is small, say ¢ < n, then this
algorithm has an efficient deterministic variant. The following argument is influenced by
the proof of Theorem 2.35 in Lidl & Niederreiter (1983).

Recall the definition of additive order from the introduction. As in Section 2, we write
zh—-1= f{’e -« fF° with fy,..., f, € F4[z] irreducible monic and pairwise distinct, e € N
and p° the largest power of p = charF, dividing n. For 1<i<rand0<j<pslet
Vij = ker f] (o) be the nullspace of the linear mapping f/(c). We will use the following
lemma.

LEMMA 4.1. In the above notation, we have for 0 < i,k <r and 0 < j,[,< p*
(1) Vi; € Viin,

(i) dimV;; = jdeg fi,

(tii) if i # k, then Vi ;N Vi, = {0},

(iv) Fgn = €P Vipe.

1<igr

ProoF. (i) is trivial. Since ged(f;, fi) = 1 in (iii), with the Euclidean Algorithm we can
find s,t € Fyz] such that sf} + ¢ff = 1. If @ € V;; NV}, then

0= sf/(0)(a) + tff(a)(a) = (sf! + tf})(0)(a) = id(a) = a.

This shows (iii). Since f;(0) is a polynomial of degree g%&/:, inducing an F,-linear map,
and
Vij={a €Fgn: fi(e) € Viju},

we have inductively for 1 < j < p*

dimV; ; < deg f; + dim Vij-1 < jdeg f;. (4.1)
Again from the Euclidean algorithm, there exist sy,...,s, € Fy[z] such that
1= E 3,‘-(2“'— 1)/}‘?}e
1<i<r
Then for any a € Fyn,
a= 3 ((si+(z" = 1)/ ) o)),
1<igr

and (s;- (2" - 1)/ffc)(0')(a) € Vipe for all i. Thus Fyn C @)<ic, Vipe- From

n=dimker(z” ~1)(6) £ Y dimVipe < Y p°degfi=n, (4.2)

1<i<r 1€i<r
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we conclude that equality holds everywhere in (4.2) and (4.1). (ii) and (iv) follow. 0O

We now describe an algorithm that finds an element of prescribed order. As a special
case, we can use this to find normal elements. Suppose that g € F,[z] is a factor of
z" —1,and g = [1<ic, fi* a complete factorization, with fy,..., f, € F,[z] as above, and
€1,...,e. € N. We may assume that e;,...,e, > 1 and Sy === ig == 0. {or'some
s < r. Let V = ker(g(o)) C F} be the nullspace of the linear mapping g(¢), and for
1<i<sande >1,let

Viz=Via1EVi=Vi,, CV
Thus f{*(¢)(a) =0 for all « € V;, and Lemma 4.1 (iv) implies that
Y= @ V:.
1€i<s

By (i) and (ii), V{ is a proper subspace of V;, and by (iii), f;’(o)(a) # 0 forall @ € V;\ {0}
with j # i. Now choose some a; € V;\ V/ for each i < s, and set 8 = Li<ics @i Thus
Ord(e;) = f{* and (g/f:)(o)(a;) # 0. Then for any j < s we have ¥:

-g;(cr)(ﬂ) = ¥ L))

1<i<s 7J
gy Yo e S ;
= g 7 ge e + He)ey)
= %_(a)(a,-);eu.

Since § € @y<ic, Vi = V, we have Ord(8) = g. So we have the following algorithm.

Algorithm B.

Input: A description of Fy, a monic irreducible polynomial h € F,[z] of degree n, a factor
g € Fylz] of 2™ — 1, and and a complete factorization g = [],<;<, ¥ of g, with
(S Fpareey H e 3 G55

Output: An element 8 € Fyn = F,[2]/(k) with Ord(8) = g.

1. Let a = z mod h € Fyn be the standard generator of Fyn over F,. Compute the en-
tries of the matrix o = (s;)o<ij<n € F7*™ in the standard basis (1, a,a?,...,a"1),
given by a'? = 3 oc . 85507 for 0 < i < .

2. For 1 £ i < s, compute a basis (v;1,...,v:4,) of V/ = ker f#~!(o), and a basis
(Vi1y e oo Vikis Dikig1y- -+, 03y,) of Vi = ker f5(c). [We have k; = (e; — 1) deg f;, and
f,‘ = €; deg fg]

3. Set b= Zlg;‘gr Viki+1 = (bos. .. bn1) € F7

4. Return f§ = Tocic, bia'. ‘

Let MM = MMg, : N — R be the cost of matriz multiplication, i.e., such that the
product of two n x n-matrices over F, can be computed with O(MM (n)) operations in F,.
We can choose MM(n) = n%376 (Coppersmith & Winograd 1990). Systems of n linear
equations in n unknowns can be solved with O(MM(n)) operations.
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THEOREM 4.2. Given the input for Algorithm B, it returns an element B € Fgn with
Ord(8) = g. It can be performed with O(nM(n)logq + nMM (n)) operations in Fy

Proor. Correctness of the algorithm has been shown. For the timing estimate, we note
that the coordinates of all «* can be computed in O(nlog ¢) arithmetic operations in Fgn.
One operation in Fgn can be implemented with O(M(n)) operations in F.

The matrices f;(o), f~*(o) and fi*(o) can be calculated with at most n;+2|log ei|+1
matrix multiplications. Since 3¢, (n; + loge;) < n’ + n’loge; < n, the cost for these
matrix products is at most 2e MM (n). The required bases for nullspaces can be found in
O(nMM (n)) operations. [

In order to apply the theorem for the construction of normal bases (ie,g=2z"-1),
given only a description of F, and n, we have to find an irreducible polynomial of degree
n, and factor 2™ — 1. We make use of the following results.

An irreducible polynomial in Fy[z] of degree n can be computed with

(a) an expected number O°(n?logq) of operations in F, by a probabilistic algorithm
(Rabin 1980),

(b) (nloggq)°() operations deterministically, assuming the ERH (Adleman & Lenstra
1986),

(c) O"(n*/g) deterministically (Shoup 1990b).
The irreducible factors of z* — 1 can be found with

(A) an expected number O"(n?logq) of operations in F; by a probabilistic algorithm
(Ben-Or 1981, Cantor & Zassenhaus 1981),

(B) (nlogg)°®) operations by a deterministic algorithm, assuming the ERH (Huang
1985),

(C) O7(n*\/q) operations by a deterministic algorithm (Shoup 1990a).

COROLLARY 4.3. Given n € N, g € F,[z] dividing z" — 1, and a description of F,, one
can compute an element of Fyn with additive order g, (and with g=2z" -1, a normal
basis of Fgn over Fy) with

(i) an ezpected O"(n?logq + nMM(n)) operations in Fq by a probabilistic algorithm,
(i) (nlogq)®™) operations deterministically, assuming the ERH,

(11i) O7(n*,/q) deterministically.

In fact, (iii) also holds with O"((mn)*\/p) operations in Fpif g=p™.

Corollary 3.7(iii) compares favourably to (i) above, as does Corollary 3.8 to Theorem
4.2 for computing elements of given additive order.

As pointed out in the introduction, Lenstra’s (1989) algorithm gives a deterministic

polynomial-time method to find 2 normal basis if an irreducible polynomial of degree n in
F,lz] is given.
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5. Bounds on finite field functions

The Chebyshev 9 function is defined for z > 2 by (z) = 3 <. log. p, where the sum is
extended over all primes p < z. From Rosser & Schoenfeld (1962), Theorem 4, we get the
following bounds on 7.

Fact 5.1. For z > 563,

1 1
z (1— 210&:’7) <d(z)< =z (1 + 2]0&:) 3

We can define an analogue of the Chebyshev 9 function for finite fields. Forz > 1, let

Og(z) = 3 degg= Y log,|gl,

g€lq 9€lq
lsls= lgl<=

where I; is the set of monic irreducible polynomials of positive degree in F,[z]. ©.(z)
remains constant when ¢® < z < ¢**!, withb € N, and therefore we obtain sharp estimates
for ©,4(z) only when z = ¢* for some b € N.

THEOREM 5.2. For any prime power q and z = ¢° for some integer b > 1, we have
qz 7 ) qz
T =t
g—-1 ( 2V <9°(x)<q—1

For any real = > q, we have

z V4 g
q—l'(l_hﬁ) < By(z) < qfl'

PROOF. Let z = ¢* for some integer b > 1. By definition,

Og(z)= ) degg= Y dN,(d).
e e

From the bounds on N, given in equation (3.1) we get

14b 1 1: 1
Oy(2) < ¢ =2 -(1——)= d -(lﬂ——)< &
g 15_@ -1 e " ook qz ¢—1’

0y 2)2 3 ¢'-A_. T g

s v ) q
g—1 g¢g-1 g-1 ﬂ—1+(q—1)(ﬁ—1)

-
—— - > . — ——
§=1 ¢-1 @-1" ¢-1 (1 2\/5)’
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since ¢ > 2. For an arbitrary real z > g, let 2o = gl'°%*] < z. Then O4(x) = O4(zg), and
since the upper bound on ©, for powers of g is an increasing function on R, it holds for
any z 2 g. The lower bound is an increasing function of z for > 49/16. Using the fact
that z/q < 2o, when z/q > 49/16 the claimed lower bound follows. For ¢ < z < 492 /16
the claim is easily verified. 0O

We also make use of the prime number function 7(z) = #{p < z | p prime}. Rosser &
Schoenfeld (1962), Theorem 1, gives the following bounds on 7.

Fact 5.3. For any z > 17,
T T 3
log, = <ol < log.z (1 + 2]cg¢z)'

The analogue of the number-theoretic function « for a finite field F, is T, (z) = #{g €
1, : |g| < z}, for any prime power g and = > 1. We will make use of the following function
in the analysis of Il,:

d
ne)= Y L

1<d<log, =
for ¢ > 2 and z > q. It can be bounded from above as follows:
LEMMA 5.4. Foranyz > q and ¢ > 2,

g o i 2
%(I)SQMI log, = (1+logq:.-:)

Proor. First, suppose z = ¢® for some integer & > 1. For 1 < b < 6 the claim can bé
verified directly by considering each side of the inequality as a function of ¢ alone. We
omit the details. We prove the claim by induction on b > 7.

d b d
. S, =
2. T e

1<d<b 1<d<b-1

b=1 2q qb—l

g—1 (b-1)?

94
-1 =1

IA

b
g
s 13 +

b b
) q q
=L B L T n b
g—15 +q—1 bzﬁ(q )
where
b 2b%
% 7
(b-1)g  (b-1)%
Since R(g,b) is a decreasing function of ¢ and b, R(q, b) < R(2,7) = 35/18 < 2, so the

claim is true for ¢ > 2 and integer b > 1.
For any real z > ¢, let 2o = ¢l'°%*] < 7. Note first that

SRR T
g-1 log,z log,
is an increasing function of z for 2 > ¢°, so the claim, already proven for zp, holds for all
real z > ¢>. Tt is easily verified that the claim holds for all real z with g <z < q°as well.
- i
We will now show an analogue of the prime number theorem for F,lz]. TI;(z) remains

constant when ¢* < z < ¢**+!, with b e N, and therefore we obtain sharp estimates for
II,(z) only when z = ¢® for some b € N.

R(q, b) =
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THEOREM 5.5. For any prime power q, and z = ¢* for some integer b > 1,

B il & 5 ] 7) g 1 2
g—1 log,z (1 2/x <Hq($)<q—l log, = (+logqr '

For any real x > q, we have

1 z ?\/’97) q z =
Pl il iV el B :
g—1 log = (1 2\/z Sllih] < g—1 log,z ( b log, .1:)

Proor. The lower bound follows from

Ig(z)log, z = Z log, z > Z degg = O,(z),
iﬂ'ffq ffév
gl<=z gisz

and the lower bounds in Theorem 5.2. For the upper bound, note that for arbitrary real
T2q22, .
q
Hz)= 3 N > = <yfa)
1<d<log, = 1<dglog, =

by (3.1) and Lemma 5.4 proves the claim. 0O

The function v,(z) is a better approximation to II,(z), with error only 0(v/7).

For n € N, let §(n) = #{d € N, d|n, d is squarefree} = 2(") where w(n) is the
number of primes dividing n. Hardy & Wright (1962), Section 22.11 show the “normal
order” of w(n) is loglogn. We can bound § from above as follows.

THEOREM 5.6. Forn > 9,

log, n 1.25 log, log, log, n)
1 < ) :
082 8(n) < log, log.n ( log, log, n

Proor. First, note that log, §(n) is the number of distinct prime divisors of n. Suppose
n=gg-- -g;* where k, ey, e,,..., €5 are positive integers and ¢; < ¢; < --+ < g; are
primes. If no = 192+ - - gx, then 8(ng) = é(n), while ng < n. Since we are trying to prove
that § is bounded above by an increasing function of n for n > e, if the claim fails for
n, it also fails for ng as well. We can therefore assume without loss of generality that
€1 =€z =---= ¢ = 1. Now suppose p is a prime less than ¢; and p F{q1,---1qk-1}. Let
™1 = P19z -+ - gk-1. Once again §(n;) = 6(n), and if the claim fails for n, it also fails for
n1 < n. Thus, we can assume without loss of generality that n is the product of all primes
less than some z > 2,

Let z > 3989 and let n be the product of all primes less than or equal to z (the number
3989 is chosen only for convenience in this proof). Then

z 3
N = R log, z X (1 i 210&1)

by Fact 5.3. From Fact 5.1, log. n = 9(z) < (1 + 1/(2log, z)) < 1.1z or z > 0.91log, n,
for z > 3989 or n > exp(9(3989)). Also by Fact 5.1,

1 1
1 = o =4
e (1 2log, a:) 2= (1 2log, log. n + 2log, 0.9) 1
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so that

1 -1
X 1 1 ,

= (l 2logclogen+2loge{].9) 08, 8 < (1 ¥)log. n
where u = log, log, log, n/(2log, log, n) > 0, since z > 3989 or n > exp(¥(3989)). Sub-
stituting this upper bound on z into our upper bound for log, é(n) in terms of z, we
get

log, 6(n) <

log, n 3
log,((1+ u)log. n) () (1 i 2log.((1 + u)log, n))

< —M--(l+u) (1+—3——)

log, log, n 2log, log, n
log, n ( 1.25 log, log, log, n )
(14
log, log, n log, log, n

for n > exp(¥(3989)).

For i > 1, let P; be the product of the i smallest primes. The number 3989 is the
550th smallest prime, so the claim holds for n > Pgso. Using the computer algebra
program MAPLE 4.3, we verified that the claim holds for P;, where 3 < i < 550, and for
9 < n < P3; = 30. This shows the claim is true for all integersn > 9. O

The inequality of this theorem is false for n = 8.

For polynomials over finite fields, the analogue of § is as follows. For any prime power
¢, and any f € F,[z], let A (f) be the number of distinct, monic, squarefree divisors of f

(including the divisor 1). We bound A, from above in the next theorem, and show that
this bound cannot be improved much.

THEOREM 5.7. Let f € Fy[z] of degree n. Forn > 1, log, Ay(f) £ n. Forn > q,

n_ (1+ 3.510gelog¢n)'

logﬁ'&?(f)'( logqn 10gcn

Furthermore, for any fized prime power q, there ezist an infinite number of f € F,[z] such

that
n L
log2 A,(f) 2 log, n : (1 5 log, n)

where n = deg f.

ProoF. We begin with the upper bound. First note that log, Ay(f) is the number of
distinct divisors of f in I,. Suppose f = 97932 - -gi* where k, ey, €s,...,e; are positive
integers and g¢y,9,...,9x € I, are pairwise distinct. If Jo = g192---gx, then A (f) =
A¢(fo), while ng = deg fo < n. Since we are trying to prove log, Ay(f) is bounded above
above by an increasing function of n for n 2 e, if the claim fails for f, it also fails for Jo.
We can therefore assume without loés of generality that e; = ... = e, = 1. Now suppose
degg) < deggy < -+ < deggy and h #{g1,-..,9x} for some h € 1, with degh < deg gz,
and let f; = hg, - -+ gr_y. Once again Aq(fr) = Ay(f), and if the claim fails for f, it also
fails for f; (because deg f; < deg f). Therefore, we can assume without loss of generality
that, for all k|f with h € I,, all ko € I, with deg ho < degh also divide f. In other words,
f is the product of the maximum number of distinct irreducible polynomials for its degree.
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If1<n<gq, fis the product of linear polynomials in Fqlz]. Thus, log, Ay(f) = n. If

n > g, we write log, A (f) = P, + P,, where f = g; - -- g,

P1=El, Pg=zl,

ls:l<B lgil>8
1<k 1<i<k

and f=n/log.n. If 8 < q, then P, = 0. For 8 > g,
a8 2
Pi=1F < S :
2 o(B) < (g—-1) log, 8 ( log, ,6)
by Theorem 5.5. To bound P,, we note that
" =|fl= I] lal> ] B=8",

1<k lgi|>8
N 1€i<k

or P2 < nflog, 8. Weset A; =log, n and A, = log, log. n. If B < q, this gives

" L SR e A1 )
logs A(/) = s < g = i (25

_:1 0 .(1+ Az )S n .(1+1.4A2)
ngn 1\1 —/\g logqn A]{

for n > 1619 > e**, using the fact that 1/(A; — A;) < 138/ for n > 1619. If 8 > g,

n qf 2
log; A4(f) < T iy (1 + og, B ﬁ)

L B ( A1 4 qA ( +2logcq))

~ log,n \log, B ' (g—1)nlog, B log, 8

1~ _(A1+h(q,n))__ n .(1+h(q,n)+)\g)
logq mn :\1 - )\2 = ngq n }\1 — Az ?

where

S g o 2‘&1)
h(q,n)_q_l (1+A1—A; "

For n > 1619, h(g,n) is a decreasing function of n. Also, for n > 1619, h(g,n) is an
increasing function of g for ¢ > 7, and achieves its maximum with ¢ > 7. To maximize
h, we choose ¢ as large as possible. Since § = n/A1 > g, we have h(g,n) < h(n/A,n) =

3n/(n— A1) < 3.02 for n > 1619. Tt follows that

n_ 3.02 + .13) n ( 2.51), )
logy, Ay(f) < logqn (.1+ S < log, n 1+ PPy

n ( 35:\2)
< 14
log, n A

for n > 1619. For g < n < 1619, we verified the claim using the computer algebra system

Maple 4.3.
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To show that this upper bound cannot be improved much, let ¢ be a fixed prime power,
z = ¢™ for some integer m > 2, and

f= 11 s

g€lq
lgl<=

Then 2 7
logs 84(0) = () > i (1 572

by Theorem 5.5. This lower bound on Il (z) is an increasing function of  for z > 4. The

degree n of f satisfies

T
p= Y degg:&),;(:t)(—‘f_—T
g€lg q

lel<=

by Theorem 5.2, which can be rewritten z > n + n/q. This shows

n 7
logy &4(f) = —_logq(n+n/q) . (1 M iy ey q)

n i log,(1+¢71) i 7
log, n log,(n+ n/q) 2y/n+nfq
n 1 7 n 5
=) =9 > L
2 log, n (1 log, n 2\/5) ~ log,n (1 log, n)
using the fact that 7/(2/n) < 4/log,n foralln>¢>2. 0O

6. Finding primitive normal elements

Let ¢ be a prime power and n a positive integer. The multiplicative group of Fyn is cyclic
of order ¢™ — 1 (see Lidl & Niederreiter 1983, Theorem 2.8) and for any nonzero a € Fyn,
we define the multiplicative order as ord(a) = min{d e N, d > 1, a? = 1}. An element of
order g™ — 1 is called primitive and we denote by P the set of all these. It is well known
that there are ¢(¢™ — 1) primitive elements in Fyn. There is no known general way to
either generate or certify a primitive element in (probabilistic) polynomial time.

Let AV be the set of normal elements in Fyn over Fy;. What is the probability that a
randomly chosen element a € Fyn is simultaneously primitive and normal over F,? This
question was first addressed by Carlitz (1952) who showed in his statement (4.7) that

e PN N| S #(g" — 1) By(z™ — 1) _6(g" —1)A (2" - 1)
q" = g*n qﬂ/2 *

(6.1)

We will refer to the right hand side of this inequality as the Carlitz bound on the number of
primitive normal elements. For sufficiently large fields Fgn, this tends towards |P|-|V|/¢*".
It was later shown by Davenport (1968) that for ¢ prime and n > 2 there exists a primitive
normal element in Fyn over F,. Lenstra & Schoof (1987) showed that for all prime powers
gand n > 2 that there exists a primitive normal element in Fgn over F,. We give a positive
lower bound for g for all but a finite number of pairs (g,n)
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THEOREM 6.1. Let g be a prime power, n > 2, and p the probability that an element is
primitive and normal in Fon over Fy. Then

(i) if n = 300 and n > q¢*, then ¢ > 0.03/(log, n - log.(nlog, q)),
(ii) if n > 300 and n < ¢*, then ¢ > 0.01/log,(nlog, g),
(iii) if 300 > n > 2 and g > 2 x 107, then p > 0.003/log,(nlog, q).

PRrOOF. Since our bounds on &, and A, from Theorems 3.4 and 5.7 depend upon the
relationship between ¢ and n, our lower bound on p must be divided into a number of
cases. First we examine the bounds for §(¢™ — 1) and ¢(¢™ — 1), which are valid when
g" —12 16. We abbreviate A, = log,(¢" — 1), Az = log, A\; and A3 = log, A;. By Theorem

5.6,
% Al 1.25A3) n .].OgE q ( 1.25A3)
log, 6(¢™ — 1) < % (l-l- T e i 14+ v
since our upper bound on § is an increasing function. This gives log,é6(¢" = 1) <r-n/A;
where 7 = (1 + 1.25A3/A;) - log, 2. By Fact 3.5, we have ¢(¢g" — 1) > s - ¢"/A;, where
s=c-(1-1.41/)%)-(1 - ¢g™™). Applying (6.1) we have

2> (8/X2) - (By(a™ — 1)/q") — g™/ A2¥108g Aala"~1)=n/2 (6.2)
By Theorem 5.7, for n > ¢ and » > 300 we have

log, Ag(z™ — 1) < 2182, (1+ 3.5 log, log, n) 1.44n s

log, n log, n log,.n’

We will first look at case (i), where 7 > 300 and n > ¢*. Here, ®4(z"~1) > ¢"/(16log, n)

by Theorem 3.4. In this case we have r < 0.97 and s > 0.53. Using (6.2), and (6.3) we
find

0 0.53 e qn[0.97/a\3+1.44/ log, n—1/2) S 0.033 _ q—{J.DBBn. ~ 0.03
T 16log, n - A; log, n- Ay log,n- Ay

For case (ii), when n > 300 and n < ¢* we consider two subcases. First, suppose
g <n < ¢* and n > 300, which implies ¢ > 5. In this case r < 0.95, and s > 0.54, while
®,(z" — 1) > ¢"/34, by Theorem 3.4. Using (6.2) and (6.3), we find

4% 0.54 g™(0:95/232-1.44/ log. n-1/2) 5, 0.015 _ g=o09m 5, 0.01

T 34X A2 A2

For the case when 300 < n < ¢, ®,(z"—1) < ¢"/34, and by Theorem 5.7, log, Ag(z"-1) <
nlog, 2. Also, r < 0.93 and s > 0.54, giving

0.54

= — g™(093/20+log,2-1/2) 0015 ;50 0.0
é= 34A, g -~ ;\2 9 B Az :

Finally, for case (iii), we use the fact that for all ¢gz2andn > 2, log, Ag(z™ -1

)
nlog, 2 by Theorem 5.7. Since n < g, ®,(z"-1) > ¢"/34 by Theorem 3.4. For 300 > n >
and ¢ > 2 x 107, r < 1.1003 and s > 0.496, so that

0.496 0.014 0.003
> — g™1.003/Az+log, 2/ log, g—1/2) _ . =0.1Tn
e=3h, ! Ty e e

<
2
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This theorem covers all but finitely many values of (n, ¢). The exceptions, with n < 300
and ¢ < 2 x 107 are about 3.5 X 108 in number. The following proposition cuts down this
num ber.

PROPOSITION 6.2. If9 < n < 300 and ¢ > 300, then ¢ > 0.01/ log.(n log. q).

PRrooF. We use the notation of Theorem 6.1. For ¢ > 300 and 300 > n > 9, we have r = 1
and s 2 0.5. Also log, Ay(z™ — 1) < nlog, 2 by Theorem 5.7 and ®.(z™ — 1) > ¢"/34 by
Thecrem 3.4. Applying (6.2), this gives

0.5 0.015 0.01
> — g™(1/A2+1og, 2-1/2) _ 4=0.25n 3
223, iy e g B

This leaves us with about 8.3 X 10° exceptional pairs of fields. For each of these pairs
we have used Maple 4.3 to compute the Carlitz bound (6.1), or at least a good lower bound
forit. We found that it is at least 1/200 for all but 121 of the exceptional pairs of fields,
and ior the 121 remaining pairs it is negative. Thus, for all but 121 of the exceptional field
pairs, the probability of finding a primitive normal element is at least 1 /200. We have
g < 2729 and n < 21 for all 121 remaining cases. Note also that the existence proofs of
Davenport (1968) and Lenstra & Schoof (1987) showing ¢ > 0 both consider a (smaller)
number of special cases.

COROLLARY 6.3. Let q be a prime power and n > 2. There ezists a probabilistic polynomial-
time reduction from the problem of finding a primitive normal element in Fyn over F, to
finding a primitive element in Fn.

Proor. Construct a lookup table of the (finitely many) exceptional cases not covered
by Theorem 6.1 (and Proposition 6.2 and the following comments), mapping a pair (g,n)
to a primitive normal element in Fyn over F,. For a given input (g,n), where q is a
prime power and n > 2, check if (g, n) is in the table of exceptions. If it is, return the
primitive element stored there. If not, find a primitive element B € Fyn. Randomly
select an integer j between 1 and ¢™ — 2, compute a = 7, and test S for primitivity and
normality over F,. In the case of Theorem 6.1 (i), we require an expected number of at
most 34log,(n log, ¢) - log, n random choices. For the remaining two cases of Theorem
6.1, we require an expected number of at most 334 log.(n log, ¢) random choices. To test
primitivity, we need only check that ged(¢q™ — 1,4) = 1, which requires O7(nloggq) bit
operations, while to test normality requires O"(n? log, ¢) operations in F, by Theorem
2l B
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