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This paper gives an algorithm to factor a polynomial f (in one variable) over rings like
Z/rz for r € & or Fq[y]/rF gy for r € Fy[y]. The Chinese Remainder Theorem reduces
our problem to the case where r is a prime power. Then factorization is not unique,
but if r does not divide the discriminant of f, our (probabilistic) algorithm produces a
description of all (possibly exponentially many) factorizations into irreducible factors in
polynomial time. If r divides the discriminant, we only know how to factor by exhaustive
search, in exponential time.

(© 1998 Academic Press

1. Introduction

holders,

2R be either Z or Fy[y|, where I, is a finite field containing g elements, and let r € R
inon-zero non-unit. We consider polynomials in R[z|, and we aim to describe all
ble factorizations into irreducibles over the ring R/(r), where (r) denotes the ideal
ated by r. Over such rings, factorization of polynomials into irreducible factors is
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2’ +7=(x+1)(z+7) = (z+3)(z +5) mod 8,
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in fact, all four linear factors are irreducible.
ERE

%?hown that the number of irreducible factors of a polynomial can be exponential in
fiéngth of the polynomial, defined in the natural way. An overview on the special case
l:inllllg square roots in R/(r) is given in Vahle (1993).

$i SSections 2 and 3, the factorization problem is reduced by the Chinese Remainder
rem and a generalization of Hensel's Lemma to the case where r € R is a prime
and the polynomial is a power of an irreducible polynomial modulo the prime.
nain result is an algorithm in Section 4 for finding all irreducible factorizations if
¥ is a prime power. It only works when the discriminant of the polynomial is not
divisible by p*. In particular, the polynomial to be factored must be square-free. There
may exist exponentially many irreducible factors, but we provide in polynomial time a
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584 J. von zur Gathen and S. Hartlieb

concise data structure that describes all of them in a simple way. Our description is a
considerable generalization of the [act that

2% = (z — ap)(z + ap) mod p* (1.1)

for all & € {0,1,...,p—1}.

Our goal is an algorithm that describes all factorizations into irreducible factors. Some-
times it may suffice to deal with a (possibly) simpler problem: finding one factorization
into irreducible factors. This task is completely solved in the case that p* does not divide
the discriminant by Chistov’s (1987, 1994) algorithm for factoring polynomials over the
p-adic completion Ry. If the discriminant vanishes, i.e. the polynomial is not squarefree,
this task may be reduced to the case where the discriminant is nonzero. But in the case
where the discriminant is nonzero and p¥ divides the discriminant, we do not know how
to solve this problem in polynomial time. This reduction to nonzero discriminant does
not work for finding all factorizations (Example 4.13).

We need two properties of the unique factorization domain R, both satisfied by the two
examples stated at the beginning. The first one is that polynomials over R/(p) can be
factored efficiently, i.e. there are polynomial time (probabilistic) algorithms for factoring
polynomials over finite fields (Berlekamp, 1970). The second one is that the completion of
the field of fractions K of R with respect to the p-adic valuation on K is a local field, that
is, K is a field complete with respect to a discrete valuation such that the residue class
field is finite (see, for example, Cassels (1986)). Then we can use Chistov’s (1987, 1994)
algorithm for factoring polynomials over local fields. This algorithm is quite complicated,
but its running time is analysed (though not in detail). There is another algorithm by
Ford Zassenhaus for factoring polynomials over complete local Dedekind rings (see Ford
(1987)). This algorithm is easier to understand, but as far as we know its running time
has not been analysed yet. The algorithm is implemented for R = Z in the computer
algebra system MAGMA and performs very well. We rely on Chistov’s algorithm, but
any algorithm which runs in (probabilistic) polynomial time works as well.

We did not analyse the running time of our algorithm in detail, because there is no
detailed analysis of Chistov’s algorithm. It is clear that all steps of the algorithm can
be done in probabilistic polynomial time. Tn fact, our algorithm can be viewed as a
probabilistic polynomial time reduction from factoring over R/ (p*) to factoring over
Rip)-

2. The Chinese Remainder Theorem
Let r € R be a non-zero non-unit, and
r=u [T oF (2.1)
1<i<s

be a complete factorization of r, that is, u is a unit in R, the elements p;,...,ps € R
arc non-associate primes, and each integer k; is at least 1. Then the Chinese Remainder
Theorem provides an isomorphism

R/(r)[z] ~ R/(p}*)lx] x -+ x R/(pg*)[x]
fmodr >(_fmodpjf1,...,fmodp§’).
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Let f € R[z] correspond via the Chinese Remainder isomorphism to (fi,..., f). If i # j
and f; and f; are non-units over R/(p¥) and R/ (p;-c" ), respectively, then we can write

(f].}“'!f-‘i’):(17"'51!fi!1:“‘11)'(flr'"!f‘i—l}l!fi"f'l!""sfs)!

and both factors arc non-units over R/(r). Hence f is reducible. Tt follows that if f is
irreducible over R/(r) (that is, its residue class modulo r is irreducible in R/(r)[xz]), then
there is at most one i < s such that f; is a non-unit over R/ (pf) In fact, f; is irreducible
in R/(pF)[z]. On the other hand, there is at least one such i < s, because otherwise f
would be a unit over R/(r). So the irreducible polynomials [ € R[z] over R/(r) are, up
to multiplication by units, of the form

f=(1="'!1:fiall--'al)v (22)

where for some 1 < i < s all entries but the ith are 1, and f; € R[z] is an irreducible
polynomial over R/(p*).

Shamir (1993) made an interesting proposal for using familics of multivariate modular
polynomials in cryptography. He gave a wonderful example of how already the most
innocnous of all polynomials, namely z, has a surprising factorization.

EXAMPLE 2.1. (SHAMIR, 1993) Letr = pq for different (non-associate) primes p,q € Z.
Then p? + ¢° is a unit in Z./(r), pr + q and gz + p are irreducible over Z./(r), and

z=(p® +¢*) pz + q)(gz + p) mod r.

In particular, nontrivial irreducible factors of f can have the same degree as f.

If f = 0mod pf* for some i < s, then f is not irreducible, since (fi,..., fs) =
(1,...,1,2, 1,...,1) - (f1,..., fs) is a factorization in which none of the two factors
is invertible. In the presence of zerodivisors we sometimes have no factorization of f into
irreducible factors at all, since in the example R = Z, f = 4z, and r = 6. But we are
not ready to give up at this point, as it seems that only the constants cause the diffi-
culties. The subtleties of this question are illustrated by the fact that 2 = 2-4 mod 6
is not irreducible modulo 6, but 2 is irreducible modulo 12, by (2.2) and its irreducibil-
ity modulo 4. We write f — (Hbﬂiﬂspii) cgwithl; = 0orl; > k; and g # 0 1mod p,
for all ¢ < s such that l; > k;. Now we factor g into irreducible factors modulo r, say
9 =g1...9: mod r, where all g; € R[z] are irreducible over ?/(r). Then the factorization
of fis f = (nggs p‘;")g]...gg mod 7. In the example above, where R = Z, f = 4z
and 7 = 6, this yields the factorization f = 22(4x + 3)(3z + 4) mod 6, in which the
constant 2 is not irreducible. But the only reducible factors that appear are constants,
and in this case there is no factorization of these constants (or f) into irreducible fac-
tors. The example R = Z, f = 4z, and r = 12, in which we have the factorization
f = 2%(4z + 9)(9z + 4) mod 12, shows that sometimes we obtain in this way factoriza-
tions in which all factors are irreducible. Thus we will assume from now on that no pf
divides f, and will extract powers pf" with {; < k; in Proposition 3.15.

By Corollary 3.17 below, we know that every polynomial f € R[z] with f # 0 mod p*
for a prime p and k € N has a factorization into irreducible factors over R/(p*). The main
purpose of this paper is to show how all factorizations of f over R/(p*) into irreducible
factors can be computed. The Chinese Remainder Theorem shows that if we know the
factorization of r € R, then we arc able to factor f over R/(r) into irreducible factors.
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In the case where R = Fy[y], good algorithms for the factorization of polynomials over
finite fields are known. Currently, the asymptotically fastest (probabilistic) algorithms
use O((n? +nlogq)(log n)? loglog n) operations in Fy (von zur Gathen and Shoup, 1992)
or O(n'#15 log q) operations in F, (Kaltofen and Shoup, 1995) for factoring a polynomial
of degree n. Hence we obtain the following:

PROPOSITION 2.2. Let R = Fyly|. There is a (probabilistic) polynomial time reduction
Jrom the problem of factoring polynomials over R/(r) for some r € R to the problem of
factoring polynomials over R/(p*) for a prime p € R and k € N.

According to current knowledge, factoring integers scems harder than factoring polyno-
mials over finite fields; see Bach (1990) and Lenstra and Lenstra (1990, 1993) for fast
integer factoring algorithms.

The following proposition is from Shamir (1993) and shows that our assumption of
knowing the factorization is indeed necessary. We state it only for the case that R = Z.

PROPOSITION 2.3. (SHAMIR, 1993) There is a polynomial-time reduction from the prob-
lem of factoring r € Z to the problem of factoring polynomials over Z/rZ.

Finally, we state a corollary of the Chinese Remainder Theorem which follows directly
from (2.2). When we count irreducible factors, we really should count classes of associate
factors that differ only by an invertible multiplier.

COROLLARY 2.4. Let the complete factorization of 1 € R be r = u[[ i, Pi* as in
(2.1), and f € R[z] with f # 0 mod p!* for all i. An irreducible factor of f over R/(r)
corresponds to an irreducible foctor of [ modulo p;"‘ for some i < s as in (2.2). An
irreducible factorization of f over R/(r) corresponds to an irreducible factorization of
[ modulo each p*. In particular, the number of classes of irreducible factors of f over
I?/(:r“;c is the sum over all i of the numbers of classes of irreducible factors of f over
R/(p;"), and the number of irreducible factorizations of f over R/(r) is the product over
all i of the corresponding number over R/(pi.“).

3. A Generalization of Hensel’'s Lemma

From now on, we assume that r = p* for some prime p € R and k > 1 and that
our polynomials in R[z] are not divisible by p*. Figure 1 shows the Sylvester matriz
S(g,h) of two polynomials g,h € R[z] with degrees n and m, and g = 3 gc;cp, 9i2*
and h=73 . i hjzi. (Sometimes the transpose of this matrix is called the Sylvester
matrix.) By definition, the resultant of the two polynomials is res(g, h) = det S(g, h).

Since IR is a UFD, there is a p-adic (non-archimedean) valuation on the field of fractions
K of R. For a € R it is defined as follows:

‘v fv  ifa+# 0and p¥||a,
vp(a) = {oc if a = 0. I
Here, p”||a means that p” is the exact power of p which divides a, i.e. p“|a and p**! 1 a.
"This valuation extends to K in the natural way, via vy(§) = vp(a) —v,(b) for a,b € R with
b # 0. The p-adic valuation induces an absolute value |.|, on K by setting |al, = p~¥»(%)
for a # 0, and |0], = 0. By K, we denote the completion of K with respect to this
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Figure 1. The Sylvester matrix.

absolute value. In the case R = Z, this procedure yields the well-known p-adic numbers
Qp)- If R =TFyly] and p = y, then K, = Fy((y)) is the field of formal Laurent series
in y. The ring R is contained in the ring R, of valuation integers of K (p)» Which are
defined by the property that vy(a) > 0. Any element a of R(p) can be written uniquely

in the form
a=>Y ap
i20
where a; € Ris an element of a fixed set of representatives in R of the finite field R, /(p)
(e.g. a; € {0,1,...,p — 1} in the case where R = Z). The ring Rp) is a local ring with
precisely one prime, namely p, and hence a UFD. We define the p-adic value of a matrix
A= (agj);"j £ }{(r:}(m as:
vp(A) = min{vp(ai;) 11 <i<n,1 <j<m}

The p-adic value of a vector is defined in the same way. For more information about
valuation theory, see e.g. Cohn (1977, Chapter 9).

Before discussing the factorization of polynomials over R/(p*), we describe the invert-
ible elements in the ring R/(p*)[x]. In contrast to polynomial rings over fields, our rings
have invertible elements which are not constant.

LEMMA 3.1. Let f € Rlx|. Then f is invertible over R/(p*) if and only if f is invertible
over R/(p).

Proo¥. Let f be invertible over R/(p*). Then clearly f is also invertible over R/(p).
Now let f be invertible over R/(p), i.e. there exists a polynomial g; € R|z] such that
fg1 = 1 mod p. Now Newton Iteration shows that for all k > 1 there exists g, € Rz
such that fgx =1 mod pF.0

NoTATION 3.2. Let g,h € Rlz] be monic. Then d(g) = wp(disc(g)), where disc(g) =
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res(g,g’) € R is the discriminant of g, v(g, h) = vy(res(g, h)), and if res(g, k) # 0, then
5(9,h) = —vp(S(g, h)1).
LEMMA 3.3. Let g,h € R[z] with res(g, h) # 0. Then

0 < s(g,h) < r(g,h).
Moreover, if s(g,h) =0, then r(g,h) = 0.
PROOF. Since res(g, h) = det S(g, h), the adjoint A = res(g,h)S(g,h)~! of S(g,h) is a
matrix over I and has nonnegative p-adic value. Hence, r(g, h) — s(g, h) = v,(A4) > 0.
Now assume that v,(S(g,h) ') > 0. Then v,(det S(g, h)~) > 0, hence r(g, h) < 0. This
is a contradiction, because res(g, h) € R.

If 5(g, h) = 0, then S(g, h) is invertible over R(,), and hence res(g, h) is invertible over
Ry,). It follows that r(g,h) = 0. O

The next example shows that sometimes s(g, h) < r(g, h):

EXAMPLE 3.4. Let R=Z,p=3,g=22+3, and h = 2% | 92° + 122 + 27. Then

Fo B hil)t 20 £ 0 -3 0 =
Ot Guodl 3 : ] -1 1
Sloik)y= |3 +0.3 13 9 by Slgh)yt= 0 08 rgoied g
0 3 0 27 12 - 0 § 0 -%
003 0 27 B =2 B 4 ¥

Thus res(g, h) = 3%, r(g.h) =5, and s(g,h) = 3.

REMARK 3.5. The running time of our method is proportional to s(g, h). Our algorithm
and all the following statements (except T'heorem 4.2) also work when s(g, h) is replaced
by r(g,h). We have no better general bounds on s(g,h) than on r(g,h) and thus our
asymptotic time estimates would not be affected. But Lemma 3.3, Example 3.4, and
Example 3.9 show that for individual polynomials the use of s(g, h) may be advantageous.

The proof of the following proposition is analogous to the proof of the Lemma in
Borevich and Shafarevich (1966, Chapter 4, Section 3). We substitute the value r(g, h)
in their version by the sometimes smaller value s(g, h).

PROPOSITION 3.6. Let g,h € R[x] have degrees n, m, respectively, and res(g,h) # 0.
Let | € Rpy[x] with degl < n + m. Then there ewist uniquely determined polynomials
©,% € Rip)lz] with deg < m’ and deg1) < n such that

ps{g,h)g = g + h. (3.1)

PROOF. Write | = ) ;.. liz* with all I; € R(,). There exist polynomials ¢ and ¥
satisfying (3.1) if and only if there exist elements g, ...,©m 1 and 2o, ..., %0, 1 in Rpy



Factoring Modular Polynomials 589

(namely, the coefficients of the two polynomials) such that

¥irmn—1 l'n-im—l
R - o MR T (32)
'Lé.'o lo

Since res(g, h) # 0, the matrix S(g,h) is invertible over the quotient field of R, and
(3.2) is equivalent to

¥m—1 En—i—m—]
o | =pM5(g, )

Wn-1
o lo

The entries of p*#") S(g, h)~! are in R(y), and so are all ; and ;. Then ¢ = 31! ¢t
and 1) = Z:::ul ! form the unique solution of (3.1). O

Often, it suffices to compute polynomials ¢, € R[z| with degy < m and degv < n
such that p*@h)] = g + 1h mod p*@P+1 As in the proof of Proposition 3.6, the
solutions correspond to the solutions of the congruence

Ym—1 fosamiy
S(g, k)| PO | =pited) : mod p*@h+
Wn—1
o lo

REMARK 3.7. Let g, h,l € R[z] be as in Proposition 3.6. In order to compute ¢, ¢ € R|z|

such that degy < m,degy < n and p*@Mi = pg + Yh mod p*@M*1, it suffices to
determine S(g, ) mod ps(gshHl'

Another description of s(g, h) is given in the next lemma.

LEMMA 3.8. Let g, h € R|x| with res(g, h) # 0 and at least one of le(g), le(h) not divisible
by p. Then s(g, k) is minimal with the property that there exist polynomials a,b € R p)[]
such that ag + bh = p*9h),

PROOF. Proposition 3.6 shows that there exist polynomials a,b € Ry [x] such that
ag + bh = p*@:h)_ Tt remains to show that s(g, h) is minimal with this property.
Let degg = n, degh = m, and a’,b’ € R,[z] be such that a’g + b'h = p? for some
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o 2> 0. We choose one of g, h with leading coefficient not divisible by p,say g. Then le(g) is
a unit in R,), and we can divide b’ by g with remainder: ¥ = qg +b" with ¢, " € R[]
and degh” < n. If we set a” = o’ + gh, then a”’g + b"h = p° and dega” < m. In
other words, we may assume that dega’ < m and degh’ < n. Then there exists for all
I € R[z] with degl < n + m polynomials a;,b € Rp)[z] such that aig + bh = p°l,
and again by division with remainder we may assume that dega; < m, degb, < n. Let
Bl = Z:U{,'ACm aix:’ bi i ZOﬂi(ﬂ ﬂixi’ b= Eﬁgwén | "'imi? where all ai”@i € R(P)’ and
all [; € R. Then

Qm—1 z\f:l.-l—lrn\ 1
S| 0. | =¢ ; :
.ﬁn 1 7
Bo lo
and therefore
Qm-1 ln+m—1
Qg o -1
.-‘3?1—1 = p '6 (g L] h’)
o lo
Using successively all monomials z! with i = 0,...,n 4+ m — 1 for [, we obtain that

p”S(g,h) ! is a matrix over Ry, and hence s(g,h) < 0. O

Without the condition on the leading coefficients, s(g, h) may fail to be minimal, as
shown by the cxample g = pF2+2, h = p*2+1, where g—h = 1 and s(g, h) = r(g, h) = k.

EXAMPLE 3.9. This example shows that the difference between r(g,h) and s(g,h) may
becone arbitrarily large. Let R=Z, n>1, g=2a>" +1, h=2""" 1, and p=2. Then
r(g,h) = 2"~ (Apostol, 1970, Proof of Theorem 2). In particular, (g, h) > 1, and hence
s(g,h) > 1. On the other hand,

" +1)— @+ )ETT 1) =2,
and by Lemma 3.8 we have s(g,h) < 1. Thus s(g,h) = 1.

LEMMA 3.10. Let g,h,g',h' € R[z] be such that res(g,h) # 0, g’ = g mod p$@M+1
B = hmod p*9M+1 degg = degg’, degh = degh’, and at least one of lc(g’), le(R’) is
not divisible by p. Then s(g',}') = (g, h).

PrOOF. Let o = s(g,h), and assume first that res(g’,h’) = 0. Then S(g’,h') is not
invertible, and there is a vector b € R"™ such that S(¢’,h’)b = 0, and b # 0 mod p.
Hence there are polynomials ¢, € R|z] such that deg ¢ < m = deg h, degy) < n = deg g,
and

vg' +¥h' =0,
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with ¢ # 0 mod p or ¢ # 0 mod p. But then ¢g + ¢h = 0 mod p?'. Hence @g + 1hh —
p” 'l for a polynomial I € R[z] with deg! < n+m. By Proposition 3.6 there exist unique
suluhnnq @', 9" of the equation ¢'g + ¥'h = p°l with degy’ < m and degt’ < n. Then
the unique solutions ¢, ¥ of wg + Yh = p°+1 with degp < m and deg 1) < n are p = py’
and 9 = pY/, a contradiction. Hence, res(g’, ') # 0, and s(g’, h') is defined.
By Proposition 3.6, there exist polynomials ¢, ¥ € Ry [z] with deg ¢ < m and deg ) <
n such that @g + 1h = p?. It follows that g’ + ¥h' = p° mod p°T1. Let g’ + h’ =
p° +p°’+1£’ with I’ € Rp)[z]. Then g’ +yh' = p°(1+pl’), and (1 + pl’) is invertible over
R/(p*) for every k > 1. Hence there exist polynomials a,b € R[ ] such that ag' +bh' =
p” mod p*@ ")+ Now assume that o < s(g’,h'). Then p‘g(g H)=aqgl 4 pola' W) —oppt =
po(ah") Illt)d p*(e W )¥1, Thus there exists an I € R[x] such that

p* @ I=aggl | g WD) moppt — pe(atR) (1 4 iy,

Let =3 geium0it®, b= ¥ ocicn bty and I’ = 2 scicn Lzt with all a;,b;,1; € R.
Then - s e

p.«(_q"h’)—n

Om—1 \ ( anq.m ! \

p‘g{g’!h’)_aa

! h" i ] = S(Q’Sh’}
S(g',h") pie W) =g 1ba_y . ’
: Pt I)’Tl
\ pstg W)=op, } \ L¥ o )
hence
g‘ff
. i~ 1 }S‘En-{—m—l
e )=e 2: =p R S(g 1) : ' o
= .
: v
1 1+ plg

We are done if we can show that the last column of p*(9-")8§(g’, h')~! is not divisible by
P, because then the right-hand side of (3.3) is not divisible by p, whereas the left-hand
side obviously is. This contradiction proves that o > s(g’, h'). In the same way we can
then show that o < s(g', h').

So, assume that the last column of p*¢"*)S(¢’, h') ! is divisible by p. Then

s(g" h")—1 top =1 - pnt+m
p S(g',h') € R™,
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say
0 Am—1
ps(g’,h’)— 15(g! h!)—l =) ag
: : bn—1
0 :
1 :
bo

Witha =3,.,, aiz' € Ryp)[z] and b= 3o, biz* € Ry)[x] we have that ag’+bh' =
p*@-")=1 4 contradiction to Lemma 3.8. O

The basic tool for lifting factorizations modulo higher powers of p is Hensel’s Lemma.
It was invented by Gauf8 (published posthumously in 1863). Cauchy (1847) also states a
correct version, but draws the incorrect conclusion that f cannot have more than deg f
many roots modulo p¥ (Théoréme IX, p. 330). A simple counterexample is given in (1.1).

The next theorem is a morc gencral version of Hensel's Lemma. The usual version
assumes S(go, ho) = 0 instead of (¢), and the one in Borevich and Shafarevich (1966)
replaces (d) by & > 2r(go, ho).

THEOREM 3.11. Let p € R be a prime, k € N and f, g0, ho € R(z] be polynomials of
degrees n. + m,n, m, respectively, with the following properties:

(a) f = goho mod p*,

(b) the leading coefficients of f and goho are equal, and at least one of lc(go), le(ho) is
not divisible by p,

(¢) the resultant res(go, ho) is nonzero,

(d) k > 2s(gg, ho).

Then there are unique polynomials g, h € R, [x] such that
f =ghin Ryylz], g = gomod p""_ﬂ(g"‘h"), h = hg mod pk*s(gf‘""“),
and the leading coefficients of g and h equal those of go and hy, respectively.
ProoF. Let ¢ = s(go, ho). Using induction on i, it is sufficient to construct for i > 1
polynomials ¢;, ¥, € R[z] with deg ¢; < m, deg; < n such that if
f = ab mod p**i-1 (3.4)

with a,b € R|x| such that a = gy mod pk_" and b = hy mod -pk"’, and le(a) = le(go),
le(b) = le(hg), then

f=(a+p* 1) (b+ p* o 1p;) mod p*ti.
Here lec denotes the leading coeflicient. We rewrite (3.4) as
f=ab+p*+l,

with | € R[z] and degl < n + m, because lc(ab) = le(f). Since a = go mod p*—7,
b= ho mod p*~7, and k — o > o, we have by Lemma 3.10 that o = s(go, ho) = s(a, b).
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By Proposition 3.6 there exist polynomials ¢;, 1 € R[z] of degrees less than m,n, re-
spectively, such that

p°l = ap; + by mod p” L.
Then

f—(a+p" "M ) (b + pF 0t g
- f e pk—cr-i-i—l(a(pi il wi) s ka—2[r+23—2$%_wi
- Pk«!-i—ll il pk—o‘-{-i—lpag - pzk—z.—rwz‘—z%w_

= (0 mod pﬁ{k—i-i.—l}--—?.a',

where 2(k+¢—1) — 20 > k+1.

Put together, we have for the polynomials g = go + 3., p* 7" 1 € R,y[z] and
h=ho+ Y5, P* ' g € Riylz] that f = gh. Furthermore, g = go mod p*~? and
h = hy mod pT“"‘"

Assume that f = gh = g'h’ in R, [z] with g = ¢’ = gy mod p#=%90h0) and h = b’ =
ho mod pF#(90:h0) Let ¢ = g+pk—sleoholg and b = h+ pk—s(90:h0)p with a,b € Ry ]
Then

gh=g'h' = (g+pk-3[9mhola)(h_l_pk-'éi(yo,ho)b) o gh-l—pk_”(y"‘h'nj(b_q—l—ah)+p%_23(”""""°)a:').

It follows that bg + ah = 0 mod pF~#9:h0) and by Proposition 3.6 and Lemma 3.10
we have a = b = 0 mod p*=2¢(90h0), Hence g = ¢’ mod p?*—3#(90:h0) and h = A’ mod
pk=3slgoho) where 2k — 3s(go, ho) > k — s(go. ho). Inductively, one can now show that
g=g¢,and h=h'.0O

A version of Theorem 3.11 is already proven in von zur Gathen (1984) in a different
setting. In particular, no explicit formula for s(g, ) is given from which to compute
s(g,h) given g and h. In Boffgen and Reichert (1987) the “reduced resultant” of two
polynomials g, h € Z[z| is defined as the ideal (¢Z[x] 4+ hZ[z]) N7 in Z. Let s'(g, h) be the
p-adic value of a generator of this ideal. Then Lemma 3.8 shows that s’(g,h) = s(g, h).
Theorem 3.11 was also proven in Boffgen and Reichert (1987) in this setting.

COROLLARY 3.12. Assume that conditions (a), (b), and (c) of Theorem 3.11 hold. Then
condition (d) is true if k > d(f).

PROOF. Let f = gh with g, h € Ry [z]. Then
disc(f) = disc(gh) = disc(g)disc(h)res(g, h)? (3.5)
(see Borevich and Shafarevich (1966, Chapter 4, Section 3)). Using Lemma 3.3, we have
d(f) = d(g) +d(h) +2r(g, h) = 2s(g, h).
Since the discriminant and the resultant are polynomials in the coefficients of f, g, h, the

same is true for factorizations over R/(p*). O

REMARK 3.13. It follows from Remark 3.7 that in order to apply Theorem 3.11 it suffices
to know S(go, ho) mod pa(yo.ho)ﬂ_

The following corollary describes the relation between irreducible polynomials over




594 J. von zur Gathen and S. Hartlieh

R/(p) and irreducible polynomials over R/(p*). When p does not divide f, this is Theo-
rem XIIL7 of McDonald (1974).

COROLLARY 3.14. Let f € Rlz|. If f is irreducible over R/(p), then [ is irreducible
over R/(p*) for all k > 1. If f is irreducible over R/(p*) for some k > 1, then either
f =vg® mod p with e > 1, g € R[z| irreducible over R/(p), and v € R a unit modulo p,
ork > 2 and f = vp with v € R|z] a unit modulo p.

PrOOF. The first part of the claim is clear. For the second part, let f # 0 mod p. If
f = gh mod p, where g,h € R|z| are non-units over /(p) which are relatively prime
over R/(p) (i.e. s(g, h) = 0), then f is reducible by Theorem 3.11. Hence f = vg¢ mod p,
where v € I is a unit modulo p, and g € R[z] is irreducible over R/(p). It remains to show
that if f = 0O mod p, and f is irreducible, then f = vp as in the claim of the corollary.
First, we show that p is irreducible over R/(p*) for k > 2. Assume that p = ab mod p*
with a,b € R[z]. Then p|ab, and since p is a prime, we have pla or p|b. Let a = pa’ with
a' € R[z]. Then p|(a’b — 1), and hence a'b = 1 mod p and a’ and b are invertible over
R/(p*). This shows that p is irreducible. On the other hand, if f = 0 mod p, then p|f,
so if f is irreducible, then f = vp with v invertible modulo p*. 0

May we assume, as is customary over a field, our polynomial to be monic? Examples
like 322+ 43 € Z/(27)[x] cast some doubt, but it is a pleasant fact that the assumption
may indeed be made.

PROPOSITION 3.15. Let f € R[z]|, and k > 1. Then there ezist | € N and v,m € R|x]
such that v is a unit over R/(p*), m is monic and f = p'vm mod p*. The irreducible
factors of f are p (if | > 1) plus the irreducible factors of m over R/(p"1).

ProOF. We write f = p'g mod p* with g # 0 mod p, and may assume that | < k. We
let n. = deg g and m = deg(g mod p). If n = m, we set vy = le(g), and if m < n, we set
vy = le(g)x™ ™ + g, where g, € R is the cocfficient of 2™ in g. Then gy, Z 0 mod p.
In either case, 14 is a unit modulo p, and there is a monic polynomial my € R|xz| such
that g = vomg mod p, le(g) = le(vomo) and degg = degyy + degmg. As vy is a unit
over R/(p), we have s(v5,mp) = 0. By Theorem 3.11 there exist v,m € IZ[z] such that
g =vmmod p*~!, v = 1y mod p, m = mg mod p, and le(m) = le(mg). This means that
v is a unit over R/(p*), and m is monic. N

EXAMPLE 3.16. Let R=2Z, f =322+ 2+ 3,p=3, and k = 3. We have
f=2=(3z+ 1)z mod 3.
So we take | =0, vog = 3z + 1, and mp = x. The application of Theorem 8.11 yields the
factorization
f=(3z+19)(z + 3) mod 27,

where 3z + 19 is a unit over Z/(27) (we have (3z + 1)(9z* — 3z + 10) = 1 mod 27), and
x + 3 1is monic.

COROLLARY 3.17. Let f ¢ R[z|, p € R a prime and k € N such that  # 0 mod p*.
Then there exists always a factorization of f into irreducible factors over R/(p*).
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PROOF. By Proposition 3.15, we may assume that f is monic. If f is reducible, there
exist polynomials g, h € R[z] such that f = gh mod p*, and g and h are non-units over
R/ (pk). Then we may again by Proposition 3.15 assume that g and h are monic. But
deg g,degh < deg f, and we can recursively factor g and h. This process stops because
the degrees of the factors are strictly decreasing and at least one. O

Given f € R[z| with [ # 0 mod p*, we do the follOWing in order to find the factoriza-
tions of [ into irreducible factors: we write f = p'vm mod pF with | < k, v € R[z]
invertible over R/(p*), and m € Rz mnm( as in Proposition 3.15. Eor cach irre-
ducible factorization f fi...fs mod p* of f there exists an irreducible factorization

m = m1 .my mod p*~! of m such that each f; is, after multiplication by a unit in
R/(p")[x], elthei p or some m;. Thus we are left with the task to find all factorizations
of m into irreducible factors over R/(p* ). In other words, we consider two problems.
We call the first one GENERALFACT. The input to this problem consists of a polynomial
f € R[z] and a non-zero non-unit 7 € R. If R = Z, we require a third input, namely the
complete factorization of r into prime power factors. Output are all factorizations of f
over R/(r) into irreducible factors. The second problem is SPECIALFACT which has as
input a monic polynomial f € R|z|, a prime p € R and an integer k£ > 1. Furthermore,
the polynomial f when reduced modulo p is a power of an irreducible plynomial. The
output are all factorizations of f over 2/(p*) into irreducible monic factors. Now we have
the following reduction:

THEOREM 3.18. Let R = F4[y] or R = Z. There is a probabilistic polynomial-time re-
duction from GENERALFACT over R to SPECIALFACT over R.

PROOF. Let R = [Fy[z] or R = Z. Let f € R|x| and r € R be the inputs of GENER-
ALFACT. If R = Z, a complete factorization r = u ], L P as in (2.1) is given as a
third input. If R = [F4[x], such a complete factorization can be computed in probabilistic
polynomial time. Hence in bnth cases the Chinese Remainder Theorem can be applied.
For every i < s we write f = pl'v;g; with I; > 0, v; invertible modulo p,L and g; € Rz
monic. We now factor in probabilistic polynomial time g; over R/(p;) into monic factors
which are relatively prime powers of irreducible polynomials, and Theorem 3.11 then
shows that such a factorization can be uniquely lifted to a factorization over R/ (pf“')
Furthermore, this can be done in polynomial time (see Zassenhaus (1969)). Tt is then
sufficient to call SPECIALFACT to factor each lifted factor and apply Corollary 2.4. O

Thus in the sequel we can concentrate on SPECIALFACT.

4. Factorization over R/(p*) for Large k

It follows from Theorem 3.11 that if f = gihy mod p* for k > d(f) = v p(disc(f)),
then there exists a factorization f = gh over Ry such that g, = g mod p*~2 and hy, =
h mod p¥=9, where o = s(g, h) < d(f)/2. Hence, any two factorizations of f over R/(p*)
which give rise to the same factorization over Ry, are equal over It/(p*~?). In particular,
Theorem 3.11 shows that if k > d(f), then every factorization of f into irreducible factors
over R/(p*) is compatible with the unique factorization into irreducibles of f over R,
The next lemma formalizes this statement, which is fundamental for our algorithm.
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LEMMA 4.1. Let [ = [lici<;9i € Ripyla] be monic with dise(f) # 0, 1 > 1, and
91y, 01 € Rpy[x] monic and irreducible. Let f = gh mod p* with g,h € R[z] monic and
k > d(f). Then there erists a partz‘tz‘on {1,...,0} = S U S such that g = |[,.5 g: mod
P" 7 and h = ngq, g; mod p*=7 with o = s(nlesg,,ﬂjgs, 9i). In particular, if g is
irreducible over R/(p ), then there exists 1 <i <1 such thal g = g; mod ;ngch (gl 95)

PROOF. Since k > d(f), we can lift the factorization f = gh mod p* to a factoriza-
tion f = gh over R, such that § = gmod p® *9") and h = h mod pF=se:h) py
Corollary 3.12 and Theorem 3.11. Since factorization over Ry, is unique, there exists

a partition {1,...,1} = S U S’ such that § = [Tics 9, and h= [1jes 95- Hence

g=g= H.@h‘ mod pF (@),
1ES

h= i‘ = H q; mod pk—s(g,h].
jes

Since k > d(f) > 2s(g, h), we have that

h) :S(th H 9})

i€s  jes’

by Lemma 3.10. O

On the other hand, the next theorem shows that s(g, h) is optimal in the sense that if
[ = gh mod p* is a factorization, then there is always another factor g’ of f over R/(p*)
such that g = ¢’ mod p*=%(9") and g # ¢’ mod p* *(nM 11,

THEOREM 4.2. Let f,g,h € Rlz| be monic with degrees n + m,n, m, respectively, with
[ = ghmod p*, res(g,h) # 0 and o = s(g,h) > 0. If k > 20, there exist polynomials
@i,k € R[x] of degrees less than n,m, respectively, such that ¢, # 0 mod p or ¥ #
Omod p and f = (¢ + p* k) (h + p° “ir) mod pF.

PROOF. Let u,w € R|z] with degu < n and degw < m such that u =7, , ui z' and
W=D ocjem Wi®? and all uy,w; € R. Then

= (¢ +p* u)(h+p* “w) mod p*

2k—2c

& pF = (uh + wg) — p ww = 0 mod p*

& uh + wg = 0 mod p”
Wm-1

Wo
Up—1

& S(g,h)

= 0 mod p?.

Up

Since o = —v,(S(g, h)~!), there is a column in the matrix pS(g, h) ' € RHm)x(nim)
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with an entry not divisible by p. Let i be the index of such a column. Then 1 < i < n+m,
and by Lemma 3.6 there exists a solution of the equation

uh +wg = p°2'~! mod p7t!

with deg u < n and deg w << m. This mcans that
Wi —1 ( 0 \

0
=p°8(g,h)"' | 1 | modp?t!.
0

w0 k n )

By assumption, the ith column of p?S(g,h)~* is not divisible by p, so the vector of the
coefficients of u and w is not divisible by p. Hence we can take ¢, = u and 9, = w. O

Wo
g1

We show now how to compute all factorizations of a given monic polynomial f € R[]
with disc(f) # 0 over R/(p*) for k > d(f) = vp(disc(f)). A first approach would be
to compute one irreducible factor of f, divide by it, and factor the quotient recursively.
This works, and provides an irreducible factorization of f. However, we have a more
ambitious goal, namely, we want to find all factorizations of f into irreducibles. The
following example shows, as already did (1.1), that the number of different factorizations
of a polynomial over R/(p*) can be expouentially large in the input size, which is about
deg f - klog, p bits. But by keeping track of all previously found factorizations in a
symbolic way, we achieve a description of all factorizations in polynomial time.

EXAMPLE 4.3. Let R=2Z, p € Z an odd prime, c € Z, ¢ > 1, and f — z® — p*° € Z[z].
Then d(f) = 20. Now let k > 20, 0 < ¢ < p?, and ¢ = p? — ¢, so that ) = —p mod p°.
Then

@+ +970) @ =" + P W) = (@ + 57+ 0) @ - 7 — P 79)
=22 - (p° +*"%p)°
= o — p20 _ 9k — pPR=20 52
= [ mod pk,

and each of the factors in this factorization is irreducible by Corollary 8.14. Thus we
have p? essentially different irreducible factorizations.

We use Chistov's (1987, 1994) algorithm for factoring polynomials over local fields
whose running time is polynomial in the length of the polynomial and the logarithm of
the size of the residue class field 2/(p), if one uses a fast probabilistic factorization algo-
rithm for factoring polynomials over finite fields. If one uses a deterministic factorization
algorithm for factoring polynomials over finite fields, the algorithm is polynomial in the
length of the polynomial and the size of the residue class field.

With Chistov’s algorithm, we can easily compute one factorization of f € R[z] over
R/(p*) for k > d(f). Let f = [ly<i<i Gi Over Ryyle] with § € Ry[z] monic and
irreducible for i = 1,...,l. Let g; € Rz] with g; = g mod p* for + = 1,...,l. By
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Lemma 4.1, it remains to compute from the factorization f = I1, i< 9i mod pF all
other factorizations of f into irreducible factors. We know for each irreducible factor u
of f over R/(p*) that u = g; mod p*~*@%9) for some 1 < i <1 from Lemma 4.1.
Let h = [];.;9;- In order to determine all irreducible factors u of [ such that v =

gi mod p*#(9:1) e have to determine all polynomials ¢,% ¢ R[z] such that f = (g; +
pFo(9M ) (h + pF=2:h)y) mod p* by Theorem 3.11.

Let f,g,h be monic with disc(f) # 0, f = gh mod p*, and degg = m,degh = n.
Moreover, we may assume that s(g, h) > 0. Then

F=(g +p’°"8(9'h’);p)(h + p**9M ) mod pk (4.1)
& ph-slah) (wh + 1bg) — p2k—23(9,h){pw = 0 mod p®
P n',Q}.*. & T«'f)g = () mod ps(g,h)

Wn—1

< S(g,h) o =0 mod ps(g‘h), (4.2)

¥m—1

0
where o =3 ;.. ¢i7* € Rz], and ¢ = 2 0<icn W' € R[z]. Hence, factorizations of
the form (4.1) correspond to solutions of the system of linear equations (4.2). Tor R =%
and R = Fq[y] it has been shown in lliopoulos (1989) and Villard (1995) that there exist

polynomial-time algorithms to compute the Smith normal form of the matrix S (g, h), ie.
unimodular matrices P, () over R such that

dp 0 ... 0
P-Sgh-@=| ° % N
: £ 0
0 o= 0 dags
where d; divides djy; fori=1,...,n+m—1. (A matrix is unimodular il its determinant,

is a unit.) Let w; = min{v,(d:), s(g, h)} for i <n+m. Then 0 < w, < w1 < s(g, h) for
i < n+m. Since we assume that s(g, h) > 0, we know that D i<i<ntm Upldi) = (g, h) >
0, and hence w; > 0 for at least one i < n | m. Now let 1 < r < n +m be minimal such
that w, >0, and let t =n+m — r + 1.

We are interested in the set {a € R**™ : Da = 0 mod p*(9")}. This set is an R-module
generated by a; = p*@hey ... a,; = p*@Ne, | a, = pHOh)-wre Brdm =
pHoh—wmime o where e; denotes the ith unit vector for i < n+m. Then the R-module
M = {b e R™™ : S(g,h)b = 0 mod p*@")} is generated by {Qa; : 1 <i<n+m}. But
every element m € M with m = 0 mod p*(%") gives us a trivial solution of our original
problem (4.1), namely a solution which is congruent to g and h modulo p*. Hence we
are ouly interested in the clements n € M such that m # 0 mod p*@M and we also
allow the zero solution. So let M’ = {b € R"*™ : §(g, h) = 0 mod p*9h) b= 0orb#
0 mod p*(@M}. This is no longer an R-module or has any algebraic structure, but it pre-
cisely describes the structure of the set of solutions we are interested in. For I > 1, let
Ri C R be a set of representatives of the finite set R/(p! ), and let b; = Qa4 for
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1 <i<t. Then

M= { Z byt oy € Rs(g,h)---m for 1 4= t},

1<i<t

where p; = wv,(b;) for ¢ < t. We put (i n—1,- - %%,0, Pim—15-- -2 Fi0)° = b for each
i =1,...,t. The set of all factorizations as in (4.1) is equal to the set of factorizations
[ = g@rrae)planat) mod p* with

e i ( 2 ﬂﬂf'ﬂ-f.ﬁ"”l&)’

0<i<n 1<j<t

h(@1ren@e) — by pk=s(gh) . ( Z Z ﬂj{pj,imf),

0<icm1<j<t

where a; € Rs{g‘h)_“j for i = 1,...,t are arbitrary. This data structure allows onc to
represent the possibly exponentially many factorizations with data of only polynomial
size.

EXAMPLE 4.4. We consider f = (z* + 3)(z* + 92% + 122 + 27) = 2% + 92" + 1527 +
5422 + 36x + 81 € Zz] and p — 3. We have disc (f) = 3" - 6100, d(f) = 14, and
s(z? 4 3,2% + 922 + 122 + 27) = 3 by Example 3.4. The factor 2® + 3 is an Eisenstein
polynomial and hence irreducible. We want to describe all factorizations f = uw mod 3'°
such that u € Z|x| is irreducible over Z/(3'®) with u = 2? + 3 mod 3'*. We have to solve
the system of equations

g 1 0 Wgrg 1eae 0 L
i 1 ) P ¢ T | Y
S +3,23+922 +1224+27) | v |=] 3 0 L 12 9 o
o a 0 38 0 27 (2o
= 0 mod 27.

The Smith nermal form provides unimodular matrices P and ) such that

1 000 0
01 00 0
P-S(x®+3,2°+9?+12:+27)-Q=| 0 0 1 0 0
0009 0
000 0 27
Thus W) = ws =w3 =0,wq =2,ws =3, r=4,t =2. Then
0 -1 8
0 10 8
bh=Q| 0 [=3-] =18 | =3-] 0 | mod?2T7,
3 1 1
0 1 1
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0 1 1
0 9 9
=0 0 | = 9 = 9 mod 27,
0 1 26
1 0 0
and the set of solutions can be written as
8 1
8 9
{3&1 0 | +a 9 0<€a; <9.0<as < 27}.
1 26
1 0

Hence the factorizations are f = u(*1:02)y(@1,02) ;ad 315 4tk

wlen99) = g 4 (3135, | 2§, 3"ay)x 4 3%qy,
w2 = b4 (8- 33 + 3%a9)e? + (8- 3" + 8Man)x + 310y,

where g =22+ 3, h = 2° 4+ 922 + 122 + 27,0 < <9, and 0 < oo < 27. We see that
there exist 243 different factorizations which can be represented concisely via oy and ao.

The idea of the algorithm now is as follows: let f € R[z] be monic and k > d(f). From
Chistov’s algorithm we obtain one factorization f = [1i<i<; 9i mod p* with g; € R[z]
monic and irreducible over R/(p*) for s = 1,...,1. If I > 1, we inductively compute all
irreducible factors of f in the following way. Let o; = Y icicg 390 [ i< gt) for j =
1,...,l. We take some i < [ and assume that all factorizations f = (nlgj-:i u;)w mod p*
such that u; € R[z] is irreducible over R/(p*), uj = g; mod p*=% for j = 1,...,i —1
and w = [];.;¢; g5 mod p*~% have already been computed. This means that we have
a set of parameters such that the u;,5 = 1,...,i — 1, and w depend linearly on them.
Now we lift each factorization w = g; [], . j<19; mod p*~% to a factorization over R/(p*)
and compute all factorizations w =labmod p* such that a = g; mod p*=%+1 and b =
[li<;<; g5 mod p*~%:+1. It is shown in Lemma 4.8 and Theorem 4.9 that these two steps
can E»E done simultaneously for all parameters. The last step yields some new parameters
which are added to the set of the previously computed ones. Theorem 4.9 shows that one
obtains in this way all factorizations. In the sequel, we will use the following abbreviations.

NOTATION 4.5. Let I > 2 and f,¢1,...,q1 € Rlz] be monic such that dise(f) #+ 0 and

f=Tlicici 9 mod p*. Then we define s; = $(gus [ licjci 94), i = (90 [Ticj<195) for
i=1,...,0-1, anda;=2194333 Jor 3 =201

ALGORITHM 4.6. Input: A monic polynomial f ¢ R[z] with d(f) = vp(dise(f)) < o0, a
prime p € R, and k > 1 such that k > d(f).
OQutput: All factorizations of f over R/(p*) into irreducible monic factors.

1 Use Chistov’s algorithm to find the factorization f = [Ti<i<;9i into irreducible
monic factors of f over R, t.e. fori=1,...,1 compute gt-_rr'l-ocl p®. Ifl =1, then
output “f is irreducible” and stop. If d(f) = 0, then output “f = [1i<ic; 9 mod p*”
and stop. =i

2 Setwy = f and jo =0. Form =1....,1—1 do Steps (a) and (b).
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(a) Lift the factorization

(alr":ajm,_ ) A
W Y=gm [] g:imodptom
m<i<l
depending on the parameters ay,...,aj, _, to a factorization
(@1,.0g ) [ £ TOPN T (. RN S 3
Wn M = g = m=1" mod p¥, where
{alr-“sajm_[} k—a. 1
T, = gy mod p° 7™, and
(@100, _ =
c yreeyCy IJE H gi modpk Tt
m=i<l

for all parameters oy, ... 05,

(b) Compute all solutions of Fq.'umrm (4.2) with g = gm and h =[], ;c; 9 in
order to obtain all factorizations

(orpenmy, 4] (@10 @im). (@10 8im k
Wi m — umh Lot wm+1 dem) modp
such that
e (€ TP T | e
“;f:r. Wy ) =9 Jm—1 mod pk sm,
yoenn X {al’ ] m-
TL,ET?_T_ = bm, i ] mod Pk —‘Jm,

I

and jo, > jm—1 together with the feasible values for o, +1,-.., 0y
SR ¥ (SRS STy
3 Set ji = ji—1 and uml ) w, - # 1),
and output

= H w0 mod pk»
1<i<

together with the ranges of ay,. .. 0y,

EXAMPLE 4.7. We take the polynomial f = x° + 9z* + 152% + 542? | 36z + 81 € Z[x] of
Ezample 4.4 and k = 15 as input of Algorithm 4.6. Since d(f) = 14, we have d(f) < k.
In Step 1 of the algorithm the faclorization f = g1g2gs mod 3'% with

a=2"+3,

ga=2+9+2-3%+2.35+35+37+2.39+2.30 2.3+ 34,

ga=22+ (33 +2-32+35+37+2.3%3+2.311 1+ 2.3 1 3z

+34+9+2-3°43°43%+2.3°+310 4313 4+ 31

is computed. The polynomial g, is linear, g1 and g3 m‘e FEisenstein polynomials, and hence
all three factors of f are irreducible. Since gaga = x° +9x%+ 122+ 27 mod 3'%, Step 2 for

m = | has been done in Example 4.4. It yields the factorizations f = ug‘”‘“” {e,02) mod

315 with
u(ln:n_-llz) = x2 i 8 (3130[1 +26- 31202)3‘, & 3]5(1']1

w1 = 23 4 92° 4 1202 + 27+ (8- 3" + 8"20n)2? + (8- 3P0y + 3Man)e
+3MG‘2,

and 0 < a1 <9, 0 < ay < 27. In Step 2(a) for m = 2, one has to lift the factorization
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w*) = gogs mod 312 0 a factorization modulo 3'°. Since s(ga,gs) = 1, this can be

done as in Theorem 3.11 and yields the factorizations w{®*?) = glenvm)plar,az) yoq 3%
where

alenes) — ga + 3”0!1 + 73304,

pleraz) _ g3+ (5-3%a; + 7. 32a0)z + 8 - 3%%q;.

In Step 2(b), we have to find all factorizations w{***) = ygus mod 35 such that Uy =

a(®1:%2) mod 3 and uz = b@122) mod 314, In the same way as in Example 4.4 one has
to solve the system of linear equations

(‘f-{’l L O 1 '{f-{Tl
S(a(m,azJ, pla ,ﬂa)J Yo |l=1 01 0 Wy | =0 mod 3
®o 0 00 ®o

and obtain the factorizations
wém,a?) = ugh‘”z‘ﬂa)uéﬂu‘Cw.,ﬂrs) mod 315r

where

u(zcn,az,as) =go+ 3140‘_1 + 7380 4 3140!3,

ug™ %) — g, 4 (5.38Bay +7- 31205 + 2. 34ag)z + 8 3130,
and 0 < a3 < 3. Hence, the 3° factorizations of f into irreducible factors are
f=(g1+ (3%, +26- 3%ay)z + 3%ay) - (g2 + 3May +7- 330, + 3q;,).
(93 +(5-83"%a1 +7-3%as + 2 3"a3)z + 8 - 330, ) mod 315,
where 0 < a; < 9,0 < g < 27,0 < a3 < 3.

Before we can show that the algorithm works correctly, we have to prove the following
technical lemina.

LEMMA 4.8. Let f,g1,...,q1 € R|z| be monic, d(f) < k € N with [ = Ii<ici9i mod pF

and g; € R[z] irreducible over R/(p*) for all i. Using Notation 4.5, the following relations
hold:

(a) Let [ = uwmod p* where u,w € Rlz], and u = [Ti<i<m 9: mod p*~ ) gnd
W =[], cie0 9 mod pE=26) for some 1 < m < 1. Then

swr=s{_ TT a0 T1 8

1<i€<m m<isl
(b) We have
k - Om+1 = k- Z S > k- Z i > 28m41
1sjsm 1<j<m

Jor every m < 1.
(¢) Let a,b € R[z] such that

. ) L [
@ = gm+1 mod Pk “1gigm Ty , and b= H ¢; mod pk Ligicm i

m+2<i<]
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for some 1 <m <1 - 2. Then s(a,b) = Sy11-
(d) Leta,be R.LJ as in (c). Then

S(a,b) = S(gm+1, I1 g,-) mod p*(@b)+
m+2<i<l
(e) 8(gm;[Tirm 91) S Xicjem ™y Jor everym =1,... 1.

PROOF. Recall from (3.5) that for f = gh mod p* we have
disc(f) = disc(g)disc(h)res(g, h)? mod p*,
hence d(f) = d(g) + d(h) + 2r(g. h), because k > d(f).

(a) We have
k—s(u,w) >d(f) — s(u,w) =d(u) + d(w) + 2r(u,w) — s(u, w) > s(u, w).

Now the claim follows from Lemma 3.10.
(b) Since s(g,h) < r(g,h) for g,h € R|z|] by Lemma 3.3, we only have to prove the
second inequality. Let 1 < m < [. We use that

atr) = dta) +d( IT &) +2n

2<i<]

;d(91)+d{gz)+d( II 9:‘) +2r1 + 21

<<l

; 3 d{g,-)+ri( ¥l g,-,)+2 b B

1<i<m m<i<l 1<i<m

and obtain

k— > m>df)— Y 7

1<j<m 1< j<m
- Y dgy+a( [[a)+2 ¥ - 2 n
1<i<m m<i<l 1<j<m 1<j<m
Ed( II g@) > d(gmtr) 4 d( 1I Qi) + 2rm41
m<isl m+2<i<]
223m+1-

(c) The claim follows by applying Part (b) and Lemma 3.10.
(d) Since

Z 85 > 28mi1 2 Smy1 = s(a, b),
1<j<m
by (b) and (¢), it follows that
a = gmy1 mod ps{a b+ , and b= H g; mod ps[a,b}+l.

m+2<i<l

Hence, S(a,b) = S(gm+1,[,n42<i<; 9i) mod pelab)+1,
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(¢) Let 1 < j < L Recall that for polynomials f,¢,h € R[z] we have res(f,gh) =
res(f, ) ( s(f, ) (see, for example, Cohn (1977, Section 7.4, Theorem 2)). Hence

T'(f,gh) - r(f,g) Fr(f, h).

Now

s(gm,Hgf) Sr(gm‘Hgl) = X r(gmsgj)+r(.qm, 11 ya')

iFm igm 1<j<m m<isl

3 r(gj, II )w— 5

1€j<m J<isi 1<j<m

[A

THEOREM 4.9. Algorithm 4.6 works correctly, i.e. each irreducible factor of f over R/

(p*) is of the form ufal"”'ﬂ""’} for some 1 < i < | and feasible values for ay,...,q;,
as computed in the algorithm. It works in probabilistic polynomial time for R = Z and
R = Fyly].

Proor. If f is irreducible over Ry, it is irreducible over R/(p*) for all k > d(f) by
Theorem 3.11. Also, if d(f) = 0, the factorization of f into irreducible factors is unique
over R/(p*) for every k > 1 by Theorem 3.11. Hence, from now on we assume that
d(f) > 0 and f is reducible over R,

From Remark 3.7 and Lemma 4.8(d) we find that only the matrix

S(gm, H gi)
m<i<l
is needed in order to lift the factorizations of Step 2(a). Besides, Lemma 4.8(d) also shows
that in order to compute the solutions in Step 2(b), only this matrix is necessary. Hence,
both steps can be done for all parameters at once.

Now we prove by induction the following claim: after the execution of Steps 2(a) and

2(b) for m all factorizations f = ([],<;<,, %i)w mod p* with w; = g; mod p*=> 105 %
for all i < m have been computed. Furthermore, these arc also all factorizations such
that u; = g; mod p* 155" for every i = 1,...,m.

If m = 1, then wo = f, and in Step 2(a) there is nothing to do. In Step 2(b), all
factorizations [ = uw mod p* such that u = g; mod p*~—*1 and w = [Ti<i<; 9 mod p*—*1
are computed. Then by Theorem 3.11 and since r(g,h) > s(g,h) for all g,h € R|z],
these are also all factorizations f = uw mod p* such that u = g; mod p*~™ and w =
[Ti<i<1 9i mod Ph s

Now we let 1 < m < I. Then by the induction hypothesis we have found every factor
Wy,—1 such that

wm_1 = Gm—1 H g; mod pF—o» (4.3)

m<i<l
By Lemma 4.8(b) and Theorem 3.11 we can lift the factorization in (4.3) as is C]aimed
in Step 2(a). On the other hand, if there is a factorization w,, ; = abmod p*¥ such
that @ = g, mod p*Fi<sem™ and b = | I N mod p*~ Eig5em ™5 then again by

Lemma 4.8(b) and Theorem 3.11 this factorization is found in Step 2(1)). Hence, the
claim is proven.
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Now assume that f = ww mod p* with u irreducible. As k£ > d(f), it follows that
U = g mod pF W) gnd w = ]._.[\a';&m gi mod pF—*(=*) for some 1 < m < I. Moreover,
5(u, w) = $(gum; [[;2m 9i)- By Lemma 4.8(c) we have 3(9ms [ Listm 9i) < X1<jcm 5. Hence

ku):lf.f\jm Ty

U= gy mod p , and

w= H gi mod pF~"1sssm ™
i#=m

Therefore, this factorization will be computed by Algorithm 4.6. O

REMARK 4.10. (a) Let R = Z, and let Cz(p, n, k) denote the mimber of bit operations
for computing the complete factorization over Z,) of a polynomial f € Z[z] with
deg f = n modulo p*; Chistov’s (1987, 1994) algorithm does this in polynomial time.
Then a more detailed analysis shows that our algorithm produces on input f € Z[z]
of degree n and k € N such that the discriminant is nonzero and not divisible by
p* all factorizations of f over Z/(p*) in at most Cz(p, n, k) + O(n"klog p(klogp +
logn)?) bit operations (von zur Gathen and Hartlieb, 1996a).

(b) Let R = FFy[y] and p = y. In this case the factorizations of a polynomial f € F,[y][z]
with deg, f = n into irreducible factors over Fy[y]/(y*) can be computed with
Cq(n, k) + O(n*k? log" nk + k*n“*+?log® nk + nSNF(n, k)) operations in IF,. Here
Cy(n,k) denotes a time hound such that the complete factorization over IFy|[y]]
of a polynomial f € Fg[y][z] with deg, [/ = n can be computed modulo y* with
Cq4(n, k) operations in F,. Chistov’s algorithm yields again that Cy(n,k) can be
chosen polynomial in n and log g. SNF(n, k) is such that the Smith normal form of
an n x n-matrix over [Fy[y| together with the transition matrices can be computed
modulo y* with O(SNF(n,k)) operations. By Villard (1995) this can be done in
polynomial time. For the analysis of the running time, see von zur Gathen and
Hartlieb (1996a).

REMARK 4.11. The case k < d(f) seems more difficult to handle. We have not been
able to make the methods introduced here work for this case. Of course, the factorization
of f in Ry lx] provides a factorization modulo each p*, but we have no cfficient way
of factoring a polynomial over R/(p*) which is irreducible in R, [z]. At this point,
the only way we know to obtain all or even just one irreducible factorization is to try all
possibilities (of which there may be exponentially many). In von zur Gathen and Hartlieb
(1996b) we show how this can be done.

REMARK 4.12. In the case that disc(f) = 0 our method does not work. It is not difficult
to compute some factorization of f over R by a square-free factorization. In the case where
k > d(f) this would mean that all factorizations of f over R/(p*) are compatible with this
factorization, as Lemma 4.1 shows; in particular, all factorizations of f into irreducible
factors have the same degrees as the factorization of f over R into irreducible factors.
Even this is not guaranteed in the case dise(f) = 0, as is shown in the next example.
Thus, one can reduce the problem of finding a single factorization into irreducibles over
R/(p*) to the case where disc(f) # 0, but apparently not the problem of finding all
factorizations into irreducibles.
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EXAMPLE 4.13. Let R=1Z, p=3, and f = 2°(x + 12)% = 2° + 242* + 1442°. Then
f = (z+60)(z* + 2072* + 11722 + 272 + 81) mod 3°,
and both factors are irreducible over Z/(35).
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