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This paper investigates the minimal degree of polynomials f € R[z] that take exactly two
vpdues on a given range of integers {0,...,n}. We show that the gap, defined as n deg(f), is
@61'543). The maximal gap for n. <128 is 3. As an application, we obtain a bound on the Fourier
L&%rm of symmetric Boolean functions.
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1. Introduction
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We consider polynomials [ € R[z] that take only two values on the domain
;...yn}. For each n, we ask how small the degree of such a (nonconstant)

Sodth

S

TS, notwithstanding

Iiéélynmnial can be. We may assume without loss of generality that the range of f
15;{0 1}. Since arbitrary prescribed valucs can be interpolated by a polynomial of
@(ggree at most n, we may assume that deg(f)<n. Then [ is uniquely determined,
gijd [ € Q[x]. We seek bounds on the gap between deg(f) and n.
‘éé More precisely, for any n > 1 and a = (ag, ..., an) = (£(0), ..., f(n)) € Q"+,
g@éth J€Q[z] of degree at most n, we define the gap of a as
S5 v(a) = n — deg(f),
s
g\g@ere the degree of any constant polynomial is taken to be zero. For n > 1, the
§'§§mﬁmu! qap is
= I(n) = max v(a),
E%'é aCAy
;@‘Emre
i
CH As =010, .00, s a0k
§E§.§s an example, if a=(1,0,...,0), then f has at least n zcros (at 1,2,...,n) and
;@léu has degree at least n. But deg(f) <n, so that deg(f)=n and ~v(a)=0.
HE3
2ET

Mathematics Subject Classification (1991): 68R05; 11B83, 11Y50, 11B39

0209-9683 /97 /$6.00 (1997 Janos Bolyai Mathematical Society



346 JOACHIM VON ZUR GATHEN, JAMES R. ROCHE

In Section 2 we characterize the property “y(a) > r” by r linear equations
in ag,...,an. Then we exhibit a family ol vectors with gap one and note that
only an exponentially small fraction of vectors has positive gap. The upper bound
I'(n)<n/2 is trivial. We show that I'(n)=0 if n} 1 is prime; using a hound on the
gap between consecutive primes, we then obtain I'(n) = O('u‘548) in general. We
conjecture that, in fact, T'(n)=0(1).

In Section 3 we introduce the notion of a folded vector. The characterization
of the gap then leads to several infinite families of vectors, again with gap one, via
the solution of certain Diophantine equations. In Section 4 we extend and combine
thesc examples to obtain families with gap two or three, and then give further
examples with gap one; the latter do not, however, give any new information about
I'. In Section 5 we report on a compuler search which determined all vectors with
positive gap for n <128; the largest gap is 3.

This research was motivated by work of Nisan and Szegedy [3]. They investi-
gate the degree of polynomials in R, ..., x,] that interpolate (or approximate) a
given Boolean function g:{0,1}" — {0,1}. The smallest degree of such interpolat-
ing polynomials is the Fourier degree of g. If g is symmetric, there is an associated
function f:{0,...,n} — {0,1} whose interpolation problem is equivalent to the

original one. Bounds on I'(n) are thus equivalent to bounds on the Fourier degree
of symmetric Boolean functions.

2. Bounds on the Gap

We begin by recalling a few basic facts from the theory of difference equations;
see Graham, Knuth, and Patashnik [1] for a more complete discussion. Given
geR[z|, we define its discrete derivative Dg by

(Dg)(z) = (D'g)(x) = g(z) — g(z —1).
For i> 2, we define the discrete derivative D'g of order i inductively by
Dig=D(D"y).
Proposition 2.1. For g€ R[x] and m > L, the following hold:
(i) (D™g)(x)=20<;j<m(~1) (})alz—1).
(ii) If deg(g)=m, then deg(Dg)=m~— 1.
(iii) If g is constant, then Dg=0.

iv) Ifde =m, then D™g is a nonzero constant.
ELg
(v) DMg=0 < deg(g) <m.

Proof. (i) follows by inductjon on m; (ii) and (iii) follow immediately when g is
written out as a sum of monomials; and (iv) and (v) follow from (i) and (iii). N

Now we characterize the gap v(a) in terms of binomial sums.
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Theorem 2.2. Let n> 1, a=(ap,...,an) € Q™ and let f e Qlx] be the unique
interpolating polynomial with deg(f) <n and f(j) = a;j for 0 < j <n. Then for
0<r<n, the following are equivalent:
(i) v(a)zr,
(if) deg(f)<n—r,
(ii1) For n—r<m<n, we have

(2.1) Y (=1 (’;’) aj = (=1)"™(D™f)(m) = 0.

0<jem

Proof. We recall that y(a) =n—deg(f), note that the first equation in (2.1) holds
by Proposition 2.1(i), and use induction on r. The case r=0 is trivial, and the case
r=1 follows from Proposition 2.1(v).

For the induction step, we assume that the theorem holds for r=¢—1, where
t > 2, and show that the theorem follows for r =¢. By delinition, f is the minimal
interpolating polynomial for ag, ..., a,. We note that

deg(f) <n—t+1 <= [ is also the (unique) minimal

interpolant for ap, ..., ap—sy1.

Now using the case r=1 for interpolating at 0,...., n—t+1 and the induction
hypothesis for interpolating at 0, ..., n, we find that

deg(f) <n—t < deg(f) <n—t+1and
(2.1) holds for m =n —t +1
<= (2.1) holds for n —t < m < n. |
The following theorem demonstrates that T'(n) >1 for all odd n>3.

Theorem 2.3. Let n>>3 be odd and a€ A,, with aj=an—j for 0<j<n. Then
v(a) = 1.
Proof. This follows from Theorem 2.2, with r=1. |

Observation 2.4. Since the sum in (2.1) is lincar in the a;’s, it is clear that any

two (or more) solution vectors can be added componentwise to vield another vector
with positive gap. The only restriction is that the new vector must also have its

components in {0,1}. Thus the set of 2("+1)/2_2 nontrivial vectors a in Theorem 2.3
can be described as the set of all admissible sums of the (n+4 1)/2 “basis” vectors

(10,0005, 0,0, 10, (0: ,0:00055,0,6,1,00, L. ., (0, Wl B A0

Although there are many vectors with positive gap, we now show that most
choices of a have gap equal to zero.
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Theorem 2.5. For n>>2 and randomly chosen a € A,,,

Prob{v(a) 2 1} < SRS

Proof. Let s=|n/3|+1. With arbitrary values a; for s < j < n, we show that
there is at most one choice of the remaining a;’s that satisfies the condition in
Theorem 2.2 for »=1. This will follow because the sequence of binomial coefficients
is superincreasing in an appropriate sense, Since s> (n+1)/3, the desired probability
is at most

2/3
- _g-nf3__2 < 9—n/3
#A” = anliong il b 0 (Y
for n>3. For n=2, the prohability is 0, by Table 3.
So now suppose that there are two distinct vectors a and b such that a; =b;

for n/3<j<n and

5 (-1)3‘(?)%: S G‘)bjzo.

0<j<n 0<g<n
Let m be the maximum value of j for which aj #b;, so that m <n/3. Then
> (1)@ - =0
0<j<m i

For each j, let u; = (=1)(a; — b;)/(am — bm). Then

u; € {-1,0,1}, um=(-1)", and Z (2)% =

0<j<wmn
Thus
T T Tt
(3 (m)z('”m 2 (j)”fﬂ 2 (a)
N<j<m O<j<m

But for 0 < j < m, we have

—1] . :
n.. ln =j+1} 2 m - n/3 " 1
TN 'u-_',:_n--m-ll_%’i.i.l 2

> () <(n) T amri<(n)

0<j<m <j<m

Therefore

contradicting (2.2). [ |
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For n>2, we have the following trivial bonnds on the maximal gap:
n—1
2 1
since for each a € A, with interpolating polynomial f ¢ Q[z], either [ or [—1
has at least (n+1)/2 zeros in {0,1,...,n}; since f is not constant, we have

deg(f)=deg(f—1)>(n+1)/2. In the following theorems we obtain better upper
bounds on I'(n).

0<T(n) <

Theorem 2.6. If n+1 is prime, then T'(n)=0.

Proof. By Theorem 2.2, I'(n) >0 if and only if

2.3 > 1 (})es -

0<j<n

for some a € Ay. Writing p=n+1 and using the fact that

e P e e G
VI AR I
for 0< j <p, we obtain

5 (_1)1(?’;1),_,,3.; Y 1:-a; modp.

0<j<p 0<j<p

= (—1)7 mod p

This is congruent to 0 mod p only if the a;’s are all 0 or all 1. Since these two
cases are excluded (they give constant interpolating polynomials), (2.3) caunot be

satisfied. Thus ['(n)=0. g

Together with Theorem 2.6, any upper bound on the gaps between consecutive
prime numbers gives an upper bound on I,

Theorem 2.7. I'(n)=0(n">*%).

Proof. From Theorems 2.6 and 2.2 it follows that T'(n) <n—(p—1), where p is
the largest prime less than or equal to n+1. By Mozzochi’s [2] theorem on prime
number gaps, we have p>n— O(n"*®), and thus I'(n) =O(n-549), |

The table of prime numbers gives m=max{I'(n):1<n <128} < 13, while the

true value is m =3, by Theorem 5.2, Indeed, we conjecture that the true upper
bound is a constant.

Szegedy observed that one can apply the results of Nisan and Szegedy [3] to
obtain the following.
Theorem 2.8. Let g:{0,1}" —{0,1} be a nonconstant symmetric Boolean function
of n variables, d its Fourier degree, and a=(ag,...,an) € Ay with aizg(li{]“_".) for

0<i<n. Then d=n~— v(a), and hence

n— 0(n C'48) n—T(n) <d<n. [ |
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3. Folded Vectors and Examples with Gap One

In this secltion and the next we exhibit several infinite families of vectors with
positive gap. Three of the families have gap two, and two [amilies have gap three.

Definition 3.1. We have four natural operations on A, namely, for a = (ap, .
an) € Ap:
the reverse of a: @=(an,...,aq) € Ap,
the complement of a: e, —a=(1—ayp,...,1—ay) € A,,
the prefic of a: ra=(ap,...,an_1)€ Ap—1U{(0,...,0),(1,...,1)},
the suffiz ol a: oa=(ay,...,a,)€ 4,1 U{(0,...,0), (i oS

where ep =(1,...,1) e N"*1. If f € Q[z] interpolates a, then f(n—2) and 1— f
interpolate @ and ¢, —a, respectively. In particular, vy(a)=~(a) =7(e, — a)

sag

Because of the symmetry

n 7
o1 (=(=)
J =1
it is convenient to “fold” each vector a € A,, back on itself and consider the shortened

vector b=(by, ..., bs)=p(a) defined below.

Definition 3.2. For n>2 and a € A,,, we define the folded vector b= (bgs--.,bs) =¢(a)
as follows:

@ (ap — an,a1 — an_1, ..., O(n-1)/2 — a(-u.-i-l)/ﬁ) if n is odd,
p(a) =
(ap+ an, a1 + Gp-1, .«.y U(n-2)/2 + @(nt2)/2) il nis even,

where s = |(n—1)/2]. We denote this mapping by the folding operator p: Ay —
B, cZ°t1 where

{=1,0,1}"+1/2  if p is 0dd,

Bn = p(Ayn) = 7
{0,1, 2}'”;‘3 if n is even.

Observation 3.3. If n is cven, we have an additional component tp /g in a, which

does not appear in ¢(a). However, we may usually assume without loss of generality
that a,, ;o =0. Otherwise, the complementary vector ey, —a has (e, — ) 2=0 and

p(en—a) =2¢(n—2)/2 e(a).

In this notation, Theorem 2.2 with r=1 says that v(a)>1 for an a € A, (with
a,/2=0if n is even) if and only if

(3.2) R 1)-?’(’?)@:0,

0<y<s J
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where b=(a) and s=[(n—1)/2]. This is the property that we will work with in
the sequel, and if be B,, satisfies (3.2), we say that b has posilive gap. In particular,

if b€ By, has positive gap, then v(a) > 1 for every a € ¢! ({b}). (If n is even, we
require @y, ;9 =0.) On the other hand, for any a € A, with y(a) > 0, either b= (a)

has positive gap or, if n is even and ay2=1, b= w(ep —a) has positive gap.

Observation 3.4. If n is odd, a € A,, and b = @(a) € B, then —b = p(a) =
w(ep —a)€ By. Thus if n is odd, b has positive gap if and only if —b does.

Observation 3.5. For i€ {0,1} and be By, we let w;(h) be the number of components
in b that equal i. If n is odd, then #p~1({b}) = 2wo(®) and if n is even, then
#o71({p}) =21 b)+] hecause a3 can be 0 or 1. (3.2) will guide our search for
nontrivial gaps. However, the actual gap v(a) cannot be determined from ¢(a)
alone. This is illustrated by the vectors all), a(?)| 4(3) defined after Theorem 4.2
below, and wa from Theorem 4.2, which have the same folded vector but gaps

2,1,1,2, respectively. Given b € B,,, it is casy Lo construct @_1({h}). This may,
however, be a large set, and working with the single folded vector b is advantageous,
both conceptually (see the theorems below) and computationally (see Section 5).
Note in particular that

#By ~ 3% L 9 & HA,.

We now use our “folded vector” notation to describe several more infinite
families of vectors with gap one. Our basic idea is to take b € B, with b; =0 for
all but a small number of consecutive values of j. Then (3.2) is equivalent to a
Diophantine equation in n and k of small degree whose solutions we can determine.
Our examples in Section 4 of gap two and three are hased on these families.

In the simplest noutrivial case, we have b; =0 for all values of j but £ and
k+1, where 0<k<s—1=|(n—1)/2

—1. Then we can rewrite (3.2) as follows:

0= 3 10 (o = C0* (})on+ 04 (7 Yo

0<j<s

= (D) e (1 Kby — (k4 1)),

If nis odd, then by, b4 € {—1,1}, and the only possible solution has by = b1
and n=2k+1. But this violates the requirement, that k<s—1,

If n is even, then by, b4y €4{1,2}. But k+1<s, so that (::l) = (kil) and the
only possible solution is by, =2, b4 =1. We find all solutions to this equation in
the next theorem.

Theorem 3.6. Let n be even, 0<k<(n—-4)/2, and b€ B, with by =2, by, 1 =1, and
bj=0 otherwise. Then b has positive gap if and only if

n=0+2 and k=2t for some t > 1.
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Proof. By the above, it is suflicient to find all solutions to the equation
20k+1)=n—k.
Then n=3k+2. Since n is even, we have k=2t and n==6t+2 for some t > 0. This

solution satisfies k < (n—4)/2 if and only if t>1. |

Corollary 3.7. For each b€ By, as in Theorem 3.6, we have #gc_l({b}) =4, and for
each of the two a€ @~ 1({h}) with an =0, we have y(a)=1.

Proof. Obscrvation 3.5 implies the first claim. It is straightforward to check that
neither of the two vectors a€p~1({b}) with ay /2 =0 satisfies (2.1) with r=2; thus
“(a)<2. |

If we allow he B, to have three consecutive nonzero componeuts, we oblain a
second-order Diophantine equation in n and k. So suppose that all components of
b excepl by, by, beyq are zero. Then (3.2) is equivalent to

(7 Yo+ COR( e 0 (7 Jouss =0,

or, equivalently,

(n—k+ 1)(n — W)b_1 = (n = k+ 1)(k + Dby + (k + 1)k byy = 0.
Writing m=n—k, (3.2) is equivalent to
(3.3) (m + 1)m by — (m + 1)(k +1) b + (k + 1)k bpyq = 0.

Because k < m, we can quickly rule ont most values of (by_y,bg,bpyq1) as
solutions. We find that if n is even, then (by_1,by,bpy1) equals (1,2,1), and that
if n is odd, then it equals (—1,1,1) or (1,-1,-1). The two possibilities for odd
n correspond to pairs of unfolded vectors in A, thal are reverses of each other,

as discussed in Observation 3.4. The complete solutions are given in the next two
theorems.

Theorem 3.8. Let n be even, 1 <k <(n—4)/2, and be By, with bj,_; =bp | =1,
bi.=2, and b; =0 otherwise. Then b has positive gap if and only if

n=4t2—2 and k=2°—t—1 for some s

Proof. Letting m=n—k and using (3.3), we have to find all integral solutions with
1 <k<m of the equation

(m+1)m—2(m+1)(k+1)+ (k+ 1)k =0.
Solving for m, we obtain

(2k+1) £ v8k+9
5 .

.=




FPOLYNOMIALS WITH TWO VALUES 363

Thus 8k +9=u? for some we N, from which it follows that

w2 4y —5
3 :

Since meN, it follows that u is odd, say u=2v—1 for some v&€N. Then

m =

2 2
; " 8 i el
it ; 2 PR (v —w 13:|:(2U )

Since m >k, we have
(WP —v-1)4+Qv-1) v?+v-2

m = —

2 2

Then n=k+m=1v?—2. Since n is even, we have v =2t for some £ & N. Thus we
obtain

n=4£2—2‘ k=2£2—£—l, m=n—k=2>+1t—1.
One checks that this solution is valid for all £ > 2, but not for t=1. [ |

The Fibonacci numbers are given by Fo=0, Fy =1, and F;=F;_1 + F;_g lor

2.

]

IV

Theorem 3.9. Let n be odd, 1 < k < (n—3)/2, and b € B,, with by_; = -1,
bp="bpy1=1, and b; =0 otherwise. Then b has positive gap if and only if

n= th'.} ‘EFEI' T T 1 and k= F:Z'iFZi—I—S for some 1 > 2 with 1 ?g 1 mod 3.

Proof. We seek all solutions to the equation

(2)-0)+(2)-(2)

This problem has been solved by several authors using standard techniques for Pell
equations; see, e.g., Singmaster (4] and Tovey [6]. In Singmaster [4] it is shown that
(n,k) is a solution if and only if

n=Fyiiokpiy3—1 and k= Fo;Fo;1y for some i > 0.

In addition, we require that n be odd and that k> 1, so 1> 1 and either Fo; o
or I;4g is even. Since F} is even if and only if j =0 mod 3, it follows that the
general solution is valid for our purposes if and only it i>1 and i#1 mod 3. | |

Theorem 3.9 shows that T'(n) > 1 for n = 103,731,.... However, we already
know from Theorem 2.3 that I'(n) > 1 for all odd n>3.

So far we have considered the first- and second-order Diophantine equations
that arise if all but two or three consecutive components of the folded vector b
are zero. We could continue in this vein by letling four consecutive components be
nonzero, but third-order Diophantine equations do not usually yield infinite families
of solutions. One exception is given by the following theoremn.
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Theorem 3.10. Let n be odd, 2<k < (n-3)/2, and b¢c By, with by_, = g =l
by=>bg41=-1, and b; =0 otherwise. Then b has positive gap if and only if

n=4t> -3 and k=92%—t—1 for some t > 2.

Proof. We have

G I L i (8
z(ki2)+(kfl)‘2((ki1)" (:))*(:)‘“(kil)
- gl )

By Theorem 3.8, this expression is zero only if

n+1=42-2 and k=22 —t—1 for some ¢ > 1.

Moreover, this solution is valid for all > 2. i

4. Families with Gap Two or Three

In this section we use Theorem 2.2 with r > 2 to find families with gap two
or three. Firsl we convert the condition in Theorem 2.2 into a more convenient
condition.

We claim that condition (i) in Theorem 2.2 entails the following relations:

: » fm
(4.1) ¥, n—r<m<n, 0<i<n—-m Z (=1)7 (j )ajH =
0<j<m

which are easily proved by induction, using Pascal’s triangle. (1.1), together with
Theorem 2.2, implies the following propagation of the gap to and from prefix and
suffix vectors, which will be use[u] in establishing the theorcms of this section.

Proposition 4.1. Let n>2,r>2 and ac Q™11

(i) v(a ) <=:> Y((20,... 0n—3)) 27— for 0<i<r.
(ii) y(a)> 'y(a)'.z 1 and ~y(ma) >r—1.
(iii) v(a)> v(a)>1 and y(ea) >r—1.
(1\) y(a)>r = ')r{'na)'g'r—l and y(ra)>r—1.
(v) T(n—=1)>T(n)—1.

Proof. We (lCuUlt‘ by X(m, n) the sum in (2.1). For 0<i<r and n—r<m <n—i,
we have Y (m,a)=X(m,(an,...,an_;)). Then (i) and (11_} follow from Theorem 2.2.



POLYNOMIALS WITH TWO VALUES 355

Next, (iii) follows from (ii) applied to @, since y(a) =v(@) and y(oa) =~(ca) =~(7a).
In (iv), “==" follows from (ii) and (iii). For “=", we have a unique polynormial of
degree at most n—2 interpolating ay,...,a, 1; by assumption, it also interpolates
ag and ap. For (v), let a€ A, with I'(n)=~(a)=r. Then ma€ 4,,_1 or cac Ap_1,
and in either case ['(n—1) v —1, by (i) or (ii1). 1
The propagation in (v) is illustrated in Table 3 for n=15,35,63,99,105.
Proposition 4.1 (v) says that for gap two we need positive gaps for two consec-
utive values of n. This occurs, e.g., in Theorems 3.8 and 3.10. The next theorem

gives the gaps of the corresponding vectors. We use the notation introduced in
Delinition 3.1 to represent, prefix and suffix vectors,

Theorem 4.2. Let t >2, n=4(*—1, k=2t —t—1, and a € 4,, with ap =api =
Up—f—1=0p_f =1, and a; =0 otherwise. Then
(i) y(a)=3,
(if) (ra)=2,
(ii1) y(wmwa)=1.
Proof. Let o' = 7mmwa = (ag,...,an—2) € Ap—s. Then b= —p(a’) € B, _o satisfies
Theorem 3.10, and thus y(a’) > L. Proposition 4.1 (ii) and Theorem 3.8 imply the

lower bound on y(wa) in (ii). By Theorem 2.3, we have «(a) > 1, and hence y(a) >3,
using the lower bound in (ii) and Proposition 4.1 (ii). Finally, the sum (2.1) for

m=n-—3J is
L n—23 n—3 n—3 n—23
gL i y
1) ( (k—3)+(k—2)+( K k+1
Substituting for n and k, one finds that the sum is nonzero for all {; this implies all
the upper bounds, by Proposition 4.1 (ii). [ |

This approach suggests considering some other veclors, with n.=4t% — 2 and
k=21%—t—1;

alt) = ( U 0 | RS Vel gl € Aq,

a® = ( 0 1 9 AN T Suasee € Ans

AL e S A e O R e € An,

et A g L S e et

al®) = ( L e 0 1 -l giledng
k—1 k k+1 n-k—1n—k n—k+1

Now a(1) =mald), o(2) :E, and a=7a(® is as in Theorem 4.2. Then one checks,

using the method of Theorem 4.2 and additional calculations for the last four upper
bounds, that

1) =2, 9(a®) =1(a®) =1, 1(a®) = 7(a®) = 0.
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Just as we found vectors with gap three from the basic solution of Theorem 3.8,
we now extend Theorem 3.9 in the same way.

From Proposition 4.1 (iv) it follows that in order to have v(u) > 2, we must
have y(ma) >1 and 4(oa)>1. One can show that there is essentially just one way
to choose ma,oa satisfying Theorem 3.9 and/or Theorem 2.3 to create a € A,, 11
with 7(a) > 2. This solution is given in the following theorem.

The proof below will use the fact that alternating sums ol binomial coefficients
can be collapsed as follows, for any 0<k</¢<n with n>1:

o ) e e Gt

k<j<t .
—opfn—1 n—1
= (—1)k Ly )
As usual, (n__li) and (n;]) have to be interpreted as zero, and (g) as one.

Theorem 4.3. Let i>2 with i#1 mod 3, n= Fp;yoksiy3+1, k=FpiFia, and let
aC Ap be given by

1= ([1,1,0?1, U 170.\1? 11 0?0! !010: 1? 1! 0 ]-l )1
SAS (1703 1’0! S 1'.‘0‘1 1’ 1’ O’O! 1 0!0| l‘! 1" n ] b bl )1
0 k k+1 n—k—1n-k n

where the top line is used for odd k, and the bottom one for even k. Then n is odd,
and the following hold.

(1) ~(a)=3.

(i) v(wa)="(ca)=2.
Proof. Both a and owa = woa are symmelric, hence have gap at least one by
Theorem 2.3. Il k is odd, then h=¢(ooa) satisfies Theorem 3.9, so that y(coa) > 1
as well, and then y(oa) > 2 and v(a) > 3, by Proposition 4.1 (iii) and (iv). If k is

cven, then b= p(rma) satisfies Theorem 3.9, so that y(wa) >2 and ~(a) > 3, again
by Proposition 4.1. This shows all lower bounds.

Finally, it is sufficient to show that 4(amma) =0; this implics all claimed upper

bounds by Proposition 4.1 (iv). For odd k, Theorem 2.2 implies that v(emma) >0
if and only if the following sum is nonzero:

fn—3 fn—3 n—3
1 . ey =
T (" e T (77 + (G0)
0<j<n-3 0<i<k

| e £ n—4 n—4

i e—=2 k=1 Koy
using (3.1) and (4.2). The last sum is nonzero by Theorem 3.9.

A similar calculation establishes the theorem for even k. [ |
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I'(n) n first five values reference
>1 % -1 3.5.7,9,11 Thm 2.3
>1 6t—4 8, 14, 20, 26, 32 Thm 3.6
>9 42 9 14, 34, 62, 98, 142 Thm 4.2 (ii)
=3 | 15, 35, 63, 99, 143 Thm 4.2 (i)
=2 FoivoFoiia 104, 714, 33552, 229970, 10803704 | Thm 4.3 (ii)
>3 | FojpoFo+a+1 | 105, 715, 33553, 229971, 10803705 | Thin 4.3 (i)

Table 1. Lower bounds on I,
We summarize our main results so far, namely the lower hounds on I'(n), in
Table 1, where £>2, and 1> 2 satisfies 12 | mod 3.

We conclude this section with three more examples of positive gap which,
however, do not increase the lower bounds on I' that we already proved. For
brevity's sake, the proofs are left out. Two key ideas used in discovering the
examples are the telescoping trick in (4.1) and the fact that folded solulion veclors
b can be combined linearly to form new folded solution vectors.

Theorem 4.4. (i) Let r>2 be even,

-;1:-:;,.=4+T‘%‘/é(3+2v’§)*- s "r(s 2V2)",
2+\f

%m

k=kp= (B &

1
e e
.5 2)" 5

and b€ By, with by =1 for 0 <4 <k, by —bH 1 =—1, and b; =0 otherwise.
Then n,k€N, n J‘;‘ odd, and b has positive gap.

(i) Let u>4 with u0 mod 3, n=4u? -2, k=(4u?—4)/3, m=2u%—u—1, and
be Bp with by =bm =2, b1 =bpn—1=bm+1=1, and b; =0 otherwise. Then
b has positive gap.

(iii) Let r, n=ny, and k=Fk, be as in (i), with r=2 mod 4; let {=(n—2)/3; and
let b&U be defined by

1 fje{0,....,k—1}\{{¢+1},
bij=<0 ifje{d+1}Ulk+2,...,[n—1)/2},
-1 ifje{lkk+1}.
Then n=5 mod 6, and b has positive gap.

Remark. The vectors given in Theorem 4.4(iii) have n=235, 40389, ..., where each
value of n is about 577 times as great as the previous value. The example with
n =235 can be found in the computer-generated list of folded vectors with positive
gap.
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5. Computer-Generated Vectors with Positive Gap

For any given n € N we can, in principle, apply Theorem 2.2 to all 2n+1 _ 2
vectors a € Ay to find those with positive gap. 1t is more efficient, however, to

do our exhaustive search over folded vectors, of which there are only about 3™/2.
The unfolded vectors corresponding to folded vectors with positive gap can then be
examined individually to find those with gap equal to two, three, or more.

The search over folded vectors can itsell be simplified considerably by making
use of the superincreasing nature of the sequence of binomial coefficients ( ) for

sufficiently small j, much as in Theorem 2.5. This is illustrated by the adaptive
algorithm below, for odd n. A similar algorithm works for even n.

Algorithm 5.1. Suppose that n is odd. We seck all vectors
b5 (hﬂ’ g b(ﬂ-—l)fﬁj = {_11 0, 1}(”4-1)'/2

such that (3.2) holds.
We choose the components in reverse order, beginning with b(n1)/2, which

multiplies the largest binomial coefficient in the sum. After choosing each new
component by, we observe that

ZH( )()b_04=1> 3 (—1)%() Z{l)«’b()

0= <(n—1 k<j<(n-—1)/2 0<j<k

B, 20

k<i<(n-1)/2 o<j<k M

If the last inequality is violated, then our choice of (by, ..., b(n—l)/z) is incon-

sistent, so we can prune 3¥ vectors from the search tree and try a different value
of b. The search ends when we have either pruned or explicitly tried all 3(n+1)/2
vectors be {-1,0,1}{n+1)/2,

Our empirical evidence indicates that the algorithm above requires about 27/4
steps to test all b€ B,,. A Fortran implementation running for a week stealing
unused machine cycles on a 4-processor 33-Megahertz MTPS R3000 system found
all folded vectors with positive gap for 2<n <128, In addition to the 98 solutions
obtained from the theorems of the previous sections, we found 29 new solutions.

In Table 2 we list all folded vectors with positive gap for 2 < n < 128 found
by an exhaustive computer search. To save space, we omit the 63 all-zero vectors,
which are solutions for all odd n. We also omit the 21 vectors (055002, 1,00, U),



13
14
24

29
31

33
34

35

38

44
47
48
54
61
62

63
73

74

97
98

103
104
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D0 De = 31 0)

0000121 (T3.8)
222102212100
002001210121
0000000~--0+--00
000--004~-0~-=4+--
000++00-++0+0+0-
000000000000+ +--0 (T3.10)
000000000000 0 (T3.8)
000000220121
000000220102
000000220121
000000220102
+4+ A+ttt bt d Lt L b --00 (T440))
R s e 2 . il o e i Sl ) LG 0 R T
0002010220001102001

0121
12100
2200000
PO
2900171

o

000004+04+000++---0--00
000004+0+000++4+0-0--00
00000---+-04+0-0+ 000
00000---+-0+0+++--000

0000021200200212011121
000000000004+004+04+--00000
222102111001121101011000
000000000000001201001210000

0000000000000000000000000++ - 00 (T3.10)
0000000000000000000000000012100 (T3.8)
0000000000000000000021000012100 (T4.4(ii))
0000220000110210201101201210110
0000220000110210201122201210110
0000220000110210201122201222210
0000220000110210201101201222210
0000220000012121022020120220110

e +4+0-04+0+++4+404++—-+++--+4+--00
0000000000000004+0+~-+00-0+0-0+ -000000
0000000000000004+0-00+-+--04+++--000000
0000000000000000210202221111210000000
0000000000000000100201211221121000000
0000000000000000112122211221121000000

0*000000000000++--000 (T3.10)
0°°0000000000000121000 (T3.8)
0°0021000000000121000 (T4.4(ii))
000000000+ 00000000000 (T3.9)
01111111112100000000000  (T4.3)

Tuble 2. Folded vectors with positive gap far n< 128
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which occur for all n of the form 64+2. Thus of the 98 previously obtained solutions,
only 14 are recorded in the table.

Tor even n, the components are written in the order bg, by, ..., b{.”.__g)ﬂ. For

odd n, we represent —1 and +1 by “~” and “47, respectively. If be B, for odd n,
then —b & B,, has the same gap, as discussed in Observation 3.4. We list just one
of the two in the table.

After each vector given by a previous theorem we write “T” followed by the
theorem number. In addition, there are 21 essentially different new solution vectors,
which we do not know how to fit into a family, plus 8 other solutions that can be
written as simple linear combinations of other solutions.

In Table 3, we list I'(n) for 1 < n < 128. We omil the sometimes lengthy
calculations that justify these values and yield the following theorem.

Theorem 5.2. The maximum value of T'(n) for 2<n< 128 is 3.

Question 1. What is the order of I'(n)?
Conjecture. The maximum value of I'(n) for ne N is 3.

Question 2. A generalization of our problem is to consider some set K C Q and
[ €Qlz] of degree at most n with {f(0),..., f(n)} C K. What bounds can we give
on U'ge(n) =max{n—deg(f)}?

Remark. For k=#K >2, the trivial bound is I'i(n)< }”—I—l n.

Some results of this paper are valid more generally than stated; for example,
the characterizations of Section 2 obviously hold for fields of characteristic zero or
p>mn. Theorem 2.6 then implies that every two-valued polynomial of degrec less
than p over a finite prime ficld F), has maximal degree, namely p—1. The trace
from Fan to Fy shows that this is not true for all finite ficlds.

Question 3. Which degrees less than g—1 can two-valued polynomials over a finite
field F; have?
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I'(n

T'(n

97
98
89
100
101
102
103
104
105

1

106

107
108

109
110
111

142
113

114

116

117
118

119
120
121

122
123

124
125

127
128

T

65

66

67
68
69
70

it

T2

73

74

75

76

77

8

79

80

81

82

83
84

36

87

88

89

90
91

92
93

94
95

96

_n | I'(n)

33
34

I'(n

36

37
38

0

39
40
41

42

43
44

46

47
48
49
50
51

0

53

55
56

58

60
61

62

0

63

64

T

10

11

12
13

14

16
17
18

19
20

21

22

24

26
27
28
29

30
31

32

Table 3. Maximal gaps for n <128
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