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COMPUTING FROBENIUS MAPS
AND FACTORING POLYNOMIALS

JOACHIM VON ZUR GATHEN AND VICTOR SHOUP

Abstract. A new probabilistic algorithm for factoring univariate poly-
nomials over finite fields is presented. To factor a polynomial of degree
n over Fg, the number of arithmetic operations in F, is O((n?+ nlogg)-
(logn)*loglog n). The main technical innovation is a new way to com-
pute Frobenius and trace maps in the ring of polynomials modulo the
polynomial to be factored.

Subject classifications. 68Q40; 11Y16, 12Y05.
1. Introduction

We consider the problem of factoring a univariate polynomial over a finite field.

This problem plays a central réle in computational algebra. Indeed, many of
the efficient algorithms for factoring univariate and multivariate polynomials
over finite fields, the field of rational numbers, and finite extensions of the
rationals solve as a subproblem the problem of factoring univariate polynomials
over finite fields (Kaltofen 1990). This problem also has important applications
in number theory (Buchmann 1990), coding theory (Berlekamp 1968), and
cryptography (Odlyzko 1985).

In this paper, we describe a new algorithm for this problem whose asym-
ptotic running time improves upon previous results. Qur main result is a
probabilistic algorithm for factoring a polynomial of degree n over a finite field
Fo with ¢ elements that uses O((n® + nlogq) - (logn)? loglog n) operations in
F; (additions, subtractions, multiplications, divisions, and zero/tests). This
can be expressed more briefly, if less precisely, as 0" (n? + nlog q), where the
“Soft-O” notation introduced in von zur Gathen (1985) and Babai et al. (1988)
is used to suppress logarithmic factors: g = O°(k) means that ¢ = O(h(log h)*)
for some constant k.

Previously, the asymptotically fastest algorithms were due to Berlekamp
(1970), Cantor and Zassenhaus (1981), and Ben-Or (1981). These algorithms
are’also probabilistic. Berlekamp’s algorithm can be implemented with O (n¥+
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nlogg) operations in F,, if we can multiply two n X n matrices with O(n®)
operations; we can choose w < 2.376 (Coppersmith & Winograd 1990). The
- Cantor-Zassenhaus algorithm takes O”(n?log ¢) operations in F, and Ben-Or’s
algorithm also has this running time.

The contrast between the running time of our algorithm and these other
algorithms is most striking when logg ~ n. In this case, our algorithm takes
O"(n?) operations in F,, Berlekamp’s takes O"(n*), and the Cantor-Zassenhaus
algorithm takes O"(n®).

Our algorithm is a variant of the Cantor-Zassenhaus algorithm, and, like
that algorithm, breaks the general factoring factoring problem into three sub-
problems:

1. squarefree factorization, i.e., making an arbitrary polynomial squarefree;

2. distinct-degree factorization, i.e., splitting a squarefree polynomial into
polynomials whose irreducible factors have the same degree;

3. equal-degree factorization, i.e., completely factoring a squarefree polyno-
mial whose irreducible factors have the same degree.

The algorithm of Yun (1976) computes the squarefree factorization with
O7(nlog q) operations in F,.

Let f € Fg[z] be the polynomial to be factored, n = deg f, and R =
F.lz]/(f). We shall always use the symbol £ to denote (zmod f) € R. In

solving the distinct-degree and equal-degree factorization problems, the Frobe-

nius map on R, which sends o € R to af, plays a fundamental réle. Several

algorithms for these problems compute some of the iterates o, af,...,a% of
the Frobenius map for various a in R.

At the heart of our algorithms is the following idea, which we call the
polynomial representation of the Frobenius map. Suppose we have precomputed
the special element § = €9 € R. An arbitrary @ € R can be represented as
a = (g mod f) € R, where g € F,[z] has degree less than n. Thus a = g(¢£),
and the problem of computing o? can be viewed as the problem of evaluating
the polynomial g at the point 3, since

a’ =g(£)* = g(€*) = 9(B)-

This polynomial representation of the Frobenius map is due to Erich Kalt-
ofen who used it to design a factoring algorithm that takes O°(n® + nlogq)
operations in F, and only linear space. Previous algorithms with this running
time used quadratic space.
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Combining the polynomial representation of the Frobenius map with an
algorithm for fast multi-point polynomial evaluation over the ring R allows us to
compute a,af,...,a?" for a given a € R with O (n?+ nlog q) operations in F,,
whereas the obvious repeated squaring algorithm uses O"(n?log ¢) operations
in Fy, and an algorithm based on a matrix representation of the Frobenius
map uses O7(n* + nlog q) operations in F;. This new approach leads to our
basic algorithms for solving the distinct-degree and equal-degree factorization
problems, which use O°(n? + nlog q) operations in F,. These are described in
Section 3; a part of the probabilistic analysis is done in Section 4.

A high-level view of the three approaches to computing the Frobenius map
is that repeated squaring treats it as a multiplicative map on R, the matrix
representation as an F-linear function, and the polynomial representation as
an Fg-algebra endomorphism. S

The running time of our algorithm is fairly insensitive to the largest degree
d of irreducible factors of f. However, the algorithm of Cantor and Zassenhaus
actually uses only O°(ndlog ¢) operations in F,, and hence may be faster than
ours when d is small. In particular, our method does not improve root-finding.

Section 5 takes another look at equal-degree factorization. For this problem,
we do not need to compute the individual iterates of the Frobenius map, but
only sums of the form Tg<;cq a7 , where d is the degree of the irreducible factors
of f. We call such a sum a trace map, as it is given by the formula for the trace
from F,« to F,. The polynomial representation of the Frobenius map allows us
to compute the trace map for a given a € R using only O (n“+V/2 4 nlogq)
operations in F,. This leads to an algorithm for equal-degree factorization with
the same time bound, which is O"(r'" + nlog q).

At the present time, we have the anomaly that our algorithm for the “easy”
problem of distinct-degree factorization, which uses O™ (n? 4+ nlog q) operations
in F,, is asymptotically slower than our algorithm for the “harder” problem of
equal-degree factorization, which uses O"(n!7 + nlog ¢) operations in F,. The
latter problem seems harder since no deterministic polynomial time algorithm
for it is known if the characteristic of the field is large. In Section 6, we discuss
a special version of the multi-point polynomial evaluation problem that is the
bottleneck of our current algorithms for distinct-degree factorization: asympto-
tic improvements on it would immediately improve the time for distinct-degree

factorization, and hence the time for the general factoring problem. No lower

bounds are known for the factoring problem, except that factoring quadratic
polynomials takes Q(log ¢) operations in F, (von zur Gathen & Seroussi 1991).

Throughout the paper, we also discuss the space requirements—in terms of
storage of elements of F,—of our algorithms. Our basic algorithms in Section 3
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use space O(n?). The equal-degree factoring algorithm in Section 5 uses space
O(nlogn), and we present in Section 6 a distinct-degree factorization algorithm
with space O(n/?).

In Section 7, we show how to test polynomials for irreducibility with
O (n“+1/2 4 nlog q) operations in F,. This improves upon the previous meth-
ods of Butler (1954), which takes O"(n“ + nlog ¢q) operations in F,, and Rabin
(1980), using O(n?log q) operations in F,. We obtain a similar improvement
for finding normal bases, and—with a different method—an even faster algo-
rithm for computing traces in extension fields.

In Section 8, we briefly discuss the usefulness of our methods under the re-
striction that so-called “classical” algorithms for polynomial and matrix arith-
metic are used. '

Our algorithms for distinct-degree factorization are deterministic, and those
for equal-degree factorization are probabilistic. Indeed, it is a well-known open
question to find a deterministic polynomial-time algorithm for the latter prob-
lem. In Section 9, we present a new deterministic algorithm for equal-degree
factorization. Our results are best appreciated in the important special case
where ¢ = p* and p is a small, fixed prime (e.g., p = 2). Then our deter-
ministic algorithm factors an arbitrary polynomial in F,[z] of degree n using
O"(n*+n*/k) operations in F;, and O"(n2k+n3/2k?) bit operations. A variant
extracts a single irreducible factor using just O"(n? 4 nk) operations in F,, and
O"(n*k + nk?) bit operations.

Among the previously known deterministic factorization algorithms, a de-
terministic variant of Berlekamp’s algorithm described by von zur Gathen
(1987) has bit complexity O((nk)*), and an algorithm by Thiong ly (1989)
combines the trace computations of Camion (1983) and Berlekamp (1970); its
bit complexity is not stated explicitly, and appears to be O7(n®k? + n?k?).
An algorithm described by Shoup (1990) works only for £ = 1 and has a bit
complexity of O"(n?).

2. Polynomial arithmetic

In this section, we briefly recall some facts about polynomial arithmetic, and -

introduce some notation.

We will let M(n) denote an upper bound on the cost of polynomial multi-
plication. That is, we assume that we have an algorithm that multiplies two
polynomials of degree n over an arbitrary ring R (commutative, containing 1)
that uses O(M(n)) operations in R (additions, subtractions, and multiplica-
tions). We assume that this algorithm uses space for O(n) elements of R.
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In the analysis of some recursive algorithms, we implicitly assume that M
is suitably well-behaved, namely, that M is actually a function M:Rse — Rso
growing at least linearly and at most quadratically. More precisely, we insist
that

Vit e RyoVa € RZI GM(t) < M’(at) < azM(t).

With the asymptotically fastest algorithms for polynomial multiplication
(Schénhage & Strassen 1971, Schonhage 1977, Cantor & Kaltofen 1991), we
can use M(n) = O(nlog n loglog n)*.

Let f € Fy[z] have degree n, and R = Fy[z]/(f). For g € F,[z], we denote
by (g mod f) the image of g in R, and reserve the notation (g rem f) to denote
the polynomial in F,[z] obtained as the remainder on dividing g by f. For
a € R, the canonical representative of a is the unique polynomial g € F,[z]
of degree less than n such that (g mod f) = a. At times we use the following
explicit notation: for a € R, & € F,[z] is the canonical representative of a.

To implement arithmetic in R, we use the canonical representatives, and
so one addition or subtraction of elements in R takes O(n) operations in F,.
Since division with remainder of polynomials of degree at most n takes O(M(n))
operations (see Aho et al. 1974, § 8.3), multiplication of elements in R takes
O(M(n)) operations in F,.

The greatest common divisor of two polynomials of degree n over F, can
be computed with O(M (n)log n) operations in F, and space for O(n) elements
of Fy (see Aho et al 1974, § 8.9, Strassen 1983). We always take the ged of
(nonzero) polynomials to be monic.

We also need an algorithm for evaluating a polynomial in R[y] of degree
at most n at n points in R. The “standard” fast algorithm, as in Aho et
al. (1974, § 8.5), takes O(M(n)log n) operations in R and space for O(nlog )
elements of R, which translates into O(M(n)? log n) operations in F, and space
for O(n?logn) elements of F,. In the remainder of this section, we show how
to solve this problem with only O(M(n?)logn) operations in F, and space for
O(n?) elements of F; the reader may wish to skip this on first reading.

LEMMA 2.1. Given a polynomial g € R[z] of degree n over an arbitrary ring
R, and points e,...,an in R, with m < n, we can compute g(a1),...,g(am)
using

Of(n/rm + logm)M(m))

operations in R, and additional space for O(m) elements of R.

!log denotes the natural logarithm, except that in “O”-estimates, we adopt the convention
that log is defined and at least one for all positive numbers.
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PROOF. We first compute the polynomial P = (z — &) -+ (# — am). Using
a divide and conquer method, this takes O(M(m)log m) operations in R and
space for O(m) elements of R. Next, we compute h = (g rem P) as follows. We
write g = Yocicn/m giz™, Where the degree of each g; € R[z] is less than m.
Then we successively compute higher powers of ™, multiply in the appropriate
gi, and reduce modulo P as we go. This takes O((n/m)M(m)) operations in
R and space for O(m) elements of R.

Finally, we evaluate h at the points a,...,an. This can be done using
O(M(m) log m) operations in R using the algorithm in Aho et al. (1974, § 8.5),
but that algorithm uses space for O(m log m) elements of R. We can circumvent
this problem as follows. We split the points e, ..., @, into about log m blocks,
each of size about m/log m. We use the algorithm in Aho et al. to evaluate h
at the points in the first block, and then at the points in the second block, and
so on. It is easy to verify that this method uses O(M(m)log m) operations in
R and space for only O(m) elements of R. O

LEMMA 2.2. Let f € Fy[z] be a polynomial of degree n, and R = F[z]/(f).

(i) Two polynomials in R[y] of degree at most m can be multiplied using
O(M(mn)) operations in F,.

(ii) We can evaluate a polynomial in R[y] of degree at most n at m points in
R, where m < n, using

O((n/m + log m)M(mn))
operations in F, and space for O(nm) elements in F,.

ProoOF. (i) Let g,h € R[y] be the polynomials to be multiplied. We can
view the coefficients of g and h as elements of Fy[z], compute the product in
F,[z,y], and reduce each coefficient in the product modulo f. To compute the
product polynomial in F,[z,y], we can perform the well-known Kronecker sub-
stitution y — 2", reducing our problem to that of multiplying two univariate
polynomials in Fg[z] of degree at most (2n — 1)m.

Using this method, the cost of computing the product (as a polynomial in
F,lz,y]) is O(M(mn)) operations in F,, and the cost of reducing the coefficients
in the product polynomial modulo f is O(mM(n)) operations in F,, which is
O(M(mn)).

Assertion (ii) follows directly from (i) and the proof of Lemma 2.1. O
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REMARK. The problem of multiplying polynomials in R|y] of degree at most m
is in fact asymptotically equivalent to the problem of multiplying polynomials
in F,[z] of degree at most mn, in the sense that an algorithm for the former
problem can be used to solve the latter problem using the same number of
operations in Fy (up to a constant multiplicative factor).

3. A factbring algorithm

The purpose of this section is to describe and analyze an algorithm that will
factor a polynomial f € F,[z] of degree n with O"(n? 4 nlog ¢) operations in
g

The squarefree factorization of f is of the form f = fif7f3--- f2, where
fi,..., f are monic, squarefree, and pairwise relatively prime. Thus, f; is the
product of those monic irreducible polynomials in Fy[z] that divide f exactly
to the power i. Yun’s (1976) algorithm computes this squarefree factorization
with O(M(n)log n + nlog q) operations in F, and space for O(n) elements of
F, (see Knuth 1981, Exercise 4.6.2-36). So we may now assume that f is
squarefree.

In most of the paper, we will use the following notation.

q is a prime power, f € F,[z] is a squarefree monic (3.1)
polynomial of degree n, R = F,[z]/(f), and { = (z mod f) € R. :

Our basic algorithms for distinct-degree and equal-degree factorization use
as a subroutine an algorithm for computing iterates of the Frobenius map on
R, which is based on the following observation. If for some m < n we have
computed £,£9,...,69" and g € F,[z] is the canonical representative of £7",
then we can calculate {qmﬂl, : ..,E"’"f by evaluating the polynomial g at the
points £7,...,£9", since g(£9') = €9, This “doubling step” can be done using
a fast multi-point evaluation algorithm with O"(n) operations in R. Thus, if
we first compute £? using repeated squaring—which takes O(log q) operations
in R—and then perform the above “doubling step” O(logn) times, we can
compute all of the elements £,£7%,...,£7" with O°(n + logq) operations in R,
and hence O"(n? + nlog q) operations in F,.

ALGORITHM 3.1. Iterated Frobenius. :

Input: f, o, 8, and m, where, in the notation (3.1), « and 3 are elements of R
with B = £t for some power t of q, and m is a positive integer with m < n.
Output: The elements a,o’,...,a'" in R.
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1. Set y0=¢ € R, and »y = B. Let ¢ = [log, m].

2. For i = 1,...,¢ do the following. [After stage i, v = € has been
computed for 0 < j < 2°] :

Co'mpute Yai-14; = Yai-1(7;) for § = 1,...,2"" using a fast multi-
point evaluation algorithm.

3. Compute v} = &(v;) for j = 0,...,m using a fast multi-point evaluation
algorithm.

4. Return 4g,7{,...,7,.

THEOREM 3.2. Algorithm 3.1 works correctly as specified, and uses
oS )
mM (mn)logm

oPerations in Fy and space for O(nm) elements of Fy. In particular, the running
time can be bounded by

O(n?logn loglog n log m)

operations in F,.

PROO.F. For the correctness, we first prove by induction on 7 the assertion
made in step 2 of the algorithm, namely that v; =&Y for 0 < j < 2'. We have
for | < 3 < 2~} : 1

Tt = Yoia(ys) = ?'*2*'7:'(5‘_’.) = (72;’—‘ (€)”
el =@ ) ="
and thus for 0 < j <m
% = &(n) = &) = (&)’ = o’
By Lemma 2.2(ii), stage i of step 2 of takes
O ((n/2' +i)M(2'n))

operations in F;; moreover, the cost of step 3 is asymptotically bounded by the
cost of the last stage of step 2. Summing over 1 < i < ¢ yields the running

tiirne bound in the statement of the theorem. The assertions about space are
clear. O |

For distinct-degree factorization, we use a variant of an algorithm that al-
ready appears in Arwin (1918). As an aside, we remark that Arwin’s fascinating
paper foreshadows many other methods used in modern polynomial factoriza-
tion, including trace computation (McEliece 1969, Ben-Or 1981, Camion 1983),
reduction to root-finding via resultants (Berlekamp 1970), and distinguishing
roots by their order (Moenck 1977, von zur Gathen 1987, Mignotte & Schnorr
1988, Menezes et al. 1992). Arwin’s algorithm is based on the following fact
(see Lidl & Niederreiter 1983, Theorem 3.20). :

FaCT 3.3. For d > 1, the polynomial 29" — z € F,[z] is the product of the
monic irreducible polynomials in F[z] whose degree divides d.

ALGORITHM 3.4. Distinct-degree factorization.

Input: A squarefree monic polynomial f over F, of degree n. '
Qutput: The set of all pairs (g,d) such that g is the product of all monic
irreducible factors of f of degree d with g # 1.

1. For € as in (3.1), compute £? € R using a repeated squaring algorithm.

2. Using Algorithm 3.1 with arguments (f,¢,£%,n), compute a; = €7 for
i = 1, eeey N

3. Put S =0, put f* = f, and fori = 1,...,n, do the following.

(i) Compute g = ged(f*, & — z).
(ii) If g # 1, add (g,1) to S.
(iii) Replace f* with f*/g.

4, Return S.

- THEOREM 3.5. Algorithm 3.4 works correctly as specified, and uses

!

O(M(n*)logn + M(n)logq)

operations in F, and space for O(n?) elements of F,. In particular, the running
time can be bounded by

O((n?log n + nlog q) -log n loglog n)

operations in F,.




196 von zur Gathen and Shoup

chomput. complexity 2 (1992 Factoring polynomials 197
g

comput complexity 2 (1992)

ProoF. Note that & — z = 29' — 2 mod f, so that the correctness of the

algorithm follows from Fact 3.3. The time and space bounds are easy to verify.
O

ALGORITHM 3.6. Equal-degree factorization.
Input: A squarefree polynomial f over F, of degree n and a positive integer

d, wb;;e f is the product of r irreducible factors, each of degree d (so that
n=rd). . ;

Output: The set of monic irreducible factors of i i

X ‘Ifdegf = d, then return {f}; if deg f = 0, then return @.
2. For ¢ as in (3.1), compute £? using repeated squaring.

3. Pick a € R at random and compute

=Y o,

0<i<d

using Algorithm 3.1 with arguments (f,@,€9,d-1) toget o, 0f,...,07""
and then summing these elements.

B

4. If q is odd, then do the following:

(i) Compute v = B9-0/2 ysing repeated squaring.
(ii) Compute by = ged(4, f), hy'= god(§ — 1, f), and ha = f/(hyha).

(iii) Recursively factor hy, hs, and ks, and return the union of these three
sets of factors,

Else, if ¢ = 2*, do the following:
(i) Compute v = Tocici 7.
(ii) Compute hy = gecd(%, f) and hy = f/h,.

(iii) Recursively factor hy and h,, and return the union of these two sets
of factors.

THEOREM 3.7. Algorithm 3.6 works correctly as specified, and uses an ex-
pected number of

O(M(nd)rlogd + M(n)logr logq)

aperations in F,, an expected number of O(n log r) random elements of F,, and
space for O(nd) elements of F,. In particular, the expected running time can
be bounded by

O((n*logd + nlogr logq) - logn loglogn)
operations in Fy.

PROOF. Analyzing a single recursive invocation. We consider first a single
invocation of the body of this recursive algorithm. Step 2 takes O(M(n)log q)
operations in F,, step 3 takes O(rM(nd)logd) operations in F,, and step 4
takes O(M(n)logn + M(n)log ¢) operations in Fg.

Let fi,..., fr € Fy[z] be the irreducible factors of f. Then by the Chinese
Remainder Theorem, we have an isomorphism from R onto ®I_,F,[z]/(f;) =
@1_,F,« that maps F, onto the diagonal. For a € R, suppose that (eq,-+-,0),
with each o; € F 4, is the image of o under this isomorphism.

For o randomly chosen in step 3, e, ..., a; are independently and uniformly
distributed random elements in F 4. If T: F ¢« — F, denotes the trace, then §; =
T(es) for all 1. Since T is F,-linear and surjective, fi,.. ., B are independently
and uniformly distributed random elements in F,.

In step 4, suppose first that g is odd. Each +; is 0 with probability 1/g,
and otherwise is &1 with equal probability. The polynomials hy, ks, h3 are the
products of those f; with 4; equal to 0, 1, —1, respectively. If g is even, each
component of 4 is 0 or 1 with equal probability. In this case, k) and h; are the
products of those f; with +; equal to 0 and 1, respectively.

Analyzing the entire computation. One easily checks that the recursion tree
has expected depth O(log ), since any pair of factors is “split” in one invocation

with probability at least 1f2. From this, one obtains a bound of

O(logr - rM(nd)logd + M(n)logr logq)

on the expected number of operations in F,. This proves the theorem, except
for the additional factor of logr in the first summand.

We now give a more detailed analysis of the algorithm that eliminates this
extra factor of logr. We model the probabilistic behavior of the algorithm by
a certain type of “balls and bins” game; we refer to the following section for a
description of this game.

Suppose that g is odd. We calculate first the expected number of operations

‘in F, spent performing step 3 in all recursive invocations of the algorithm.




198 von zur Gathen and Shoup comput complexity 2 (1992)

comput complexity 2 (1992) Factoring polynomials 199

This corresponds to a balls and bins game in the following way. The “balls”
correspond to the irreducible factors of f. The “bins” correspond to the poly-
nomials ky, hy, and hz. A “ball landing in bin ¢” corresponds to an irreducible
factor of f dividing h;. The probabilities associated with the three bins are
p1=1/q, p2 = (g—1)/2g, and ps = (¢ — 1)/2¢.

The cost function g of the game is chosen so that g(r) is an upper bound on
the number of operations performed in step 3 in a single recursive invocation
of the algorithm. We can take

g(r) = ¢ rM(rd)(log d +1),

for an appropraitely chosen constant ¢. Clearly, ¢ satisfies the strong super-
linearity condition of Lemma 4.1(ii), and we then find (with £ = 3, w = 1/2,
and € = 1) that the expected number of operations spent performing step 3 in
all recursive invocations is O(rM(nd)log d).

By similar reasoning, we can bound the expected number of operations
spent in steps 2 and 4 in all recursive invocations by O(M(n)logn logr +
M(n)logr logq). Note that we incur the extra factor of log r because the asso-
ciated cost function will not necessarily satisfy the hypothesis of Lemma 4.1(ii),
and so only (i) applies.

If ¢ is even, we can argue similarly, but this time the behavior of the algo-
rithm is modeled by a balls and bins game with two bins, each with associated
probability 1/2. O

We summarize the results of this section in the following theorem, which is
the main result of this paper.

THEOREM 3.8. We have a probabilistic algorithm that factors a polynomial
of degree n over F, using an expected number of

O((n* + nlogq) - (log n)? loglog n)

operations in F,.

4. A game of balls and bins

In the proof of Theorem 3.7, it is convenient to model the probabilistic behavior
of Algorithm 3.6 by a balls and bins game of the following type. We have a
fixed number £ of bins, and when a ball is tossed, the probability that it lands
in bin ¢ is p; for 1 < ¢ < £. A ball must land in some bin, i.e., ©icicepi = 1,

and p; < w < 1 for all i. Associated with the game is a “cost function”

| g:Rso— Ryo.

The game is played with r > 2 balls as follows. First, the player pays g(r)
units. Second, the player throws the balls into the bins. Third, for each bin
that contains at least two balls, the player recursively plays the game with the
balls in that bin.

Let G(r) be the total number of units that the player pays during the
game, including the units paid in all recursive games. We want to estimate the

~ expected value E[G(r)] of G(r).

(i) If g grows at least linearly, i.e.,
Vt € RyoVa € Ry;  g(at) = ag(t), .

LEMMA 4.1.

then
Vr>2 E[G(r)] £ cig(r)logr,

where ¢; is a constant depending only on w.

(i) If g grows at a strongly super-linear rate, i.e., for some constant € € Ry
Vt € RyoVa € Ry;  g(at) > a'*ig(t),

then
Yr>2 E[G(r)] € cglr),

where c; is a constant depending only on w, £, and e.

PrROOF. Corresponding to any game is a tree representing all of the recursive
games played, where each node in the tree is labeled with the number of units
payed for that particular game. The quantity G(r) is just the sum of all of
the values labeling the nodes of the tree. Let D be the number of levels in the
game tree,

We first bound the expected value E[D] of D. For any pair of balls, the
probability that they land in the same bin in any one game is at most w. Thus,
the probability that this pair of balls has not been split after level number ¢ in
the game tree is at most w'. Since the number of such pairs is less than r?, we
have Pr[D > t] < r?w'~. Then one calculates that -'

E[D] = S PrD>1

t>1

2logr i Z 2 -1
log(1/w) t>2logr/ Tog(1/w)+1

2logr

Bazaﬁ+1+1ﬂl—wl
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Our assumption that g grows at least linearly implies that the values labeling
the nodes on any one level of the tree sum to no more than g¢(r). Thus,
E|[G(r)] < g(r) - E[D], and (i) follows with :

= 2 1+1/(1-w)
oy log(1/w) log 2 i

For (ii), we first note that Ty pi™® < w® < 1. Let v = (1 + w®)/2.
Clearly, we can choose § > 0—depending only on w, € and £—in such a way
that 7icice(pi +6)'*¢ < 7.

Call a toss of the balls “bad” if more than p;r+6r balls land in bin 7 for some
1 < £. By using well-known bounds on the tail of the binomial distribution (see
Cormen et al. 1989, Corollary 6.7) one easily calculates that the probability of
a bad toss is no more than £e=%", :

Let ¢; be as above, A = max{c; logrfe=*": r > 2}, and ¢, = (14+4)/(1—7).
We prove by induction on r that E[G(r)] < cz9(r) for all 7 > 2. One easily
verifies the base case r = 2. Then, for r > 2, we have

E|G(r)] = E|G(r) | bad toss] - Pr[bad toss]
+E[G(r) | good toss] - Pr[good toss]

< o) +eglr)logr £+ T caglpir + 80
1<i<t
< g(r)(1 + A) + ca9(r) Z: (p; + 8)'*

1<i<e

gir)(1+ A+ exy) = e9(r). O

IA

5. Equal-degree factorization

In this section, we consider again the equal-degree factorization problem. We
describe a method that is more efficient than Algorithm 3.6, in terms of both
time and space. One variant of this algorithm uses O"(n?+n log q) operations in
F, and space for O(n) elements of F,. Another variant uses O"(n“t)/2+nlogq)
operations in F, and space for O(nlogn) elements of F,.

We now denote the cost of matrix multiplication by MM (n) rather than n¥;
that is, we assume that we have an algorithm that multiplies two n x n matrices
over an arbitrary ring R using O(MM (n)) operations in R. We assume that
the algorithm uses space for O(n?) elements of R, and that MM is actually a
function MM: Ry — Ry such that

VieRyoVa€Ryy  a®?MM(t) < MM(at) < a®MM(1).
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We can choose MM (n) = n?3" (Coppersmith & Winograd 1990).

A basic problem for the algorithms in this section is modular composition:
computing g(k) rem f, where f, g, and k are polynomials over F,. We sum-
marize what is known about the complexity of this problem.

FACT 5.1. Let f, g, and h be polynomials over F, of degree at most n. Then
we can compute g(k) rem f in the following time and space bounds (time is
measured in operations in F,, and space is measured in storage for elements of

P
(i) time O(nM(n)) and space O(n),
(i) time O(n'/?(M(n) + MM (n'/?))) and space 0(n?/?),

(iii) time O((MM(n'/?)n'?logn + n*?logn M(£)£~! + M(n)(logn)®) and
space O(nlogn), where £ = [logn/log q].

PROOF. (i) is proved by viewing the problem as that of evaluating a polyno-
mial of degree n at a single point in the ring R = F[X]/(f). Using Horner’s
rule, this takes O(n) operations in R and space for O(1) elements of R. Al-
gorithm 2.1 in Brent & Kung (1978) solves this problem for the special case
where f = z™ within the time and space bounds stated in (ii). In fact, this
algorithm works as stated for arbitrary f. (iii) is proved in Shoup & Smolensky
(1992). O

The complexity of modular composition is not well understood. In the
special case where f = z", Algorithm 2.2 in Brent & Kung (1978) solves this
problem using O"(n*/?) operations. Moreover, no super-linear lower bounds are
known for this problem.

In what follows we shall use Cr(n) and Cs(n) to denote the time and space
bounds for a modular composition algorithm. We assume that C7 is a function
Cr:Rso — Rsp such that

Vt € Ryo Va € R21 GCT(i) < Cr(at) < GSCT(}!J

g |

We also assume that Cjs is nondecreasing, and that Cs(n) > n.

The bottleneck in Algorithm 3.6 is the application of the iterated Frobenius
algorithm in step 3 to compute o, ?,.. ., a? . All we really need to compute is
the sum of these elements, i.e., the trace map ¥ oc;cga? . We now present a dif-
ferent algorithm for computing trace maps, based on the following observation.
Recall (3.1) and the notation & for the canonical representative of an element o
of R. Form > 1, let 8, = ZOSi(m a? and T ‘fqm- Then 8o = ﬁm"i”gm(‘fm)
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and Y3m = Ym(7m). We can therefore obtain B, and 73, from B, and 7, at
a cost of two modular compositions (plus one addition in R). Thus, if d is a
power of 2, we can easily compute the trace map By = Tocica@® as follows:
first, compute 7 using repeated squaring, and then repeat the above “doubling
step” log, d times. The total cost of this method is O7(n log ¢) operations in F,
plus O(log d) modular compositions. The algorithm is easily adapted to deal
with arbitrary d.

ALGORITHM 5.2, Computing trace maps.

Input: f, a, 8, and m, where, in the notation (3.1), @ and j are elements of R
with f = €' for some power t of q, and m is a positive integer.

Output: The elements o*” and Togjcm @’ in R.

1. Let m = Focice b;2' be the binary representation of m, with £ = |log, m|
and by, ...,b; € {0,1}.

2. (stage 0):
: o ifbg =0,
Tq—d(ﬁj, T ‘_{a-{-r =1
: £ ifbg=0,
g+ B, #‘_{ﬁ if by = 1.

3. Fori=1,...,¢ do the following (stage 1):
g if by =0,
'+ #(y) ifb=1,

o p' if b,' = ﬂ,
# Au) ifb=1.

]

rertrp), e
B i),
4. Return &(y') and 7'.

LEMMA 5.3. Algorithm 5.2 works correctly as specified, and uses O(Cr(n) -
log m) operations in F, and space for O(Cs(n)) elements of F,.

.PROOF.  The time and space bounds are clear, as the algorithm performs
O(log m) modular compositions and additions of polynomials of degree at most
n.

To prove correctness, let m; = Co<i<i b;2' for 0 < i < £, and let 7, g, 7/, !
denote the values of the variables 7y, 7', u’ at the end of stage i. We show by

induction on i that the following identities hold:

;i )
3 o, = a’,

T =
185<2¢ 0gy<m;
= 12* ' M
G = Ry o=

The base case ¢ = 0 is easily verified. Now assume that the identities hold
after stage ¢; we show that they also hold after stage i + 1. We have

i = Ti+ () = 1‘;+‘h‘(§:2‘] = T.'-I-T,-‘:‘

= Z a;;_'_ Z at: o Z: au"

1<j<2 2igigaiH - AL§ga
= b 2t 2t 2'+1
| pier = flw) = m(E") = pf = ¢
If biy1 = 0, it is clear that 7{,; and p!,, will have the correct values, so
assume that b;; = 1. Then we have

T = T+ fa(p) = o+ @) = o+

i+ ( Z: o’ )imi - E o’ + E W= E a”,

1<i<2i+1 0<j<m; mi<j<m,+21+1 0<j<mits
’ LN Ea ] tmiy _gmi pmidat ™41
iy = Bin(g) = () = piy = ¢ = 4 T

Il

We now modify Algorithm 3.6 by replacing step 3 with the following.
3'. Picka € R at random, and compute f = Focicq af’ using Algorithm 5.2
with arguments (f, o, £%,d — 1).

THEOREM 5.4. With the above modification, Algorithm 3.6 uses an expected
number of

O(Cr(n)logd logr + M(n)logn logr + M(n)logr log q)

operations in F; and space for O(Cs(n)) elements of F,. Moreover, if Cr is
one of the bounds in Fact 5.1, then this modified version of Algorithm 3.6 uses
an expected number of

O(Cr(n)logd + M(n)logr log q)

operations in Fq. In particular, we have the following time and space bounds
(time is measured in operations in F, and space in storage for elements of ek
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(i) timeO(n?logn loglogn log d+nlogn loglogn logr log ¢) and space O(n);

(ii) time O(n'7 + nlogn loglogn logr log ¢) and space O(nlogn).

PROOF. The proof is essentially the same as that of Theorem 3.7, and we
omit the details. The exponent in (ii) comes from (2.376 +1)/2 = 1.688 < 1.7.
a

6. Distinct-degree factorization

In this section, we describe another algorithm for distinct-degree factorization
that uses O"(n? + nlog q) operations in Fy, like Algorithm 3.4, but space for
only O(n®?) elements of F,.

LEMMA 6.1. Letm < n, g1,...,9m € Fg[z,y] withdeg, gi <1 and deg, g; <n
for all t < m, and h € F,[y] be monic with degh < n. Then -

Pa ( II g,-) rem h € F [z,y]

1<i<m

can be computed with
O(M(mn) log m)

operations in F, and space for O(mn) elements of F,.

PROOF. The polynomial P is obtained by taking the remainder modulo A of
each coefficient in [I<;<m gi at a power of z.

To compute it, we use a binary tree with [log, m] levels and g1,...,gm at
the leaves, i.e., level zero. At each node, we multiply the two children and take
the remainder modulo k of each coefficient of a power of z. The degree in z at
level j — 1 is at most 2/-%, and that in y is less than n. The claims follow from
Lemma 2.2(i), with the roles of z and y interchanged and R = F,[z]/(k). O

We now describe a subroutine used by our distinct-degree factorization al-
gorithm.

ALGORITHM 6.2. Range decomposition.

Input: f, a, b, @, B, where a and b are positive integers with a < b, and
o = £ and f = €9, in the notation (3.1); it is assumed that the degrees of all
irreducible factors of f lie in the range a,...,b.

Output: The set of all pairs (g,d) such that g is the product of all monic
irreducible factors of f of degree d with g # 1.
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1. If a > n, return @; if b > n, replace b with n.

2. Use Algorithm 3.1 with arguments (f, «, B,b—a) to compute o; = E‘s‘i for
$=4,...,5 :

3. Put S.: Q, f* = f, and do the following for i = a,...,b.
(i) Compute g = ged(f*, & — z).
(ii) If g # 1, add (g,%) to S.
(iii) Replace f* with f*/g.
4. Return S.

LEMMA 6.3. Algorithm 6.2 works correctly as specified, and uses

n
0 (;M(mn)log m)

operations in F, and space for O(nm) elements of F,, where m = min{n,b —
a + 1}. In particular, the running time can be bounded by

O(n?log n loglog n logm)
operations in F,.

PRrOOF. The correctness follows from Fact 3.3. The time and space bounds
can be easily checked. O

Our distinct-degree factorization algorithm works by dividing the interval
1,...,n into roughly 4/ intervals each of size about /n. For each interval,
it finds the product of the irreducible factors whose degree lies in the that

interval, and then applies Algorithm 6.2 to get the complete distinct-degree
factorization.

ALGORITHM 6.4. Distinct-degree factorization.

Input: A squarefree polynomial f € F,[z] of degree n.

Output: The set of all pairs (g,d) such that g is the product of all menic
irreducible factors of f of degree d with g # 1.

1. In the notation (3.1), compute {9 using repeated squaring.

2. Let m = |n!/?|, and m’ = [n/m].
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3. Apply Algorithm 3.1 with arguments (f,§,{",m) to obtain p; = £¥ for
g -

4. Apply Algorithm 3.1 with arguments (f, €9, pm,m’ — 1) to obtain v; =
¢ fori=0,...,m' —1. _

5. Compute the polynomial
o) = TI (#;(y) —€) rem f(y) € Rly]

0<j<m

using the method described in Lemma 6.1. [Then g(y) = Ho_gj(m[y" -
¢) mod f(y).]

6. Compute 7; = g(»;) € R for i1 = A f+11+using a fast multi-point
im 3
evaluation algorithm. [Then 7 = [Togj<m(£* -£).]

7. Put S=0, f*=f,and fori=0,...,m' =1, do the following:

(i) Compute h = ged(%, f*).
(ii) Replace f* with f*/h.

(iii) If h # 1, compute the distinct-degree factorization of h by invoking
Algorithm 6.2 with arguments (h,im + 1,im + m,v;, p1) and add
the result to S.

8. Return S.
THEOREM 6.5. Algorithm 6.4 works correctly as specified, and uses
O(M(n®*)n*/?logn + M(n)log q)

operations in F and space for O(n®?) elements of Fy. In particular, the running
_time can be bounded by -

O((n*logn + nlogg) - log n loglog )
operations in F,.

PROOF. We first prove correctness. The only subtle point is that the assertion
made in step 6 holds because we are evaluating the polynomial g(y) at points
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v; that are zeros of f(y). Thus, g(v) = []GSJ-{,T,(u?j — £). Consider the ith
iteration of the loop in step 7. We have

fiz [I @™ —2) (mod f).

0<ji<m

It follows from Fact 3.3 that the polynomial A computed in the ith iteration
is the product of those irreducible factors of f whose degree lies in the range
im+1,...,i2m + m. The invocation of Algorithm 6.2 then correctly computes
the distinct-degree decomposition of h.

We now estimate the running time, measured in terms of operations in F,.

o Step 1 takes time O(M(n)log q).

o Steps 3 and 4 take time C»v‘(.r'»fi'(n&‘;’jn"‘2 log n), by Theorem 3.2.
o Step 5 takes time O(M(n*?)logn), by Lemma 6.1.

o Step 6 takes time O(M(n%?)n'/?), by Lemma 2.2(ii).

o The total time spent in steps 7(a) and 7(b) is O(n'/?M(n)log n).

Implicit in step 7(c) is the computation at the sth iteration of ji; rem
and # rem h. The total time spent doing this is O(n'/2M(n)). Sup-
pose that Algorithm 6.2 is invoked with polynomials of degree n; for
0 < i < m'; then Tocicm:ni = n. The ith invocation takes time
O(M(n'?n;)n/?logn).” The sum of this quantity over all values of ¢
is O(M(n®/*)n*/?log n), which also bounds the total time for step 7.

Thus the running time is bounded by O(M(n*?)n'/?logn + M(n)log q),
and the assertion about space is easy to check. O

As things now stand, distinct-degree factorization is the bottleneck in our
general polynomial factoring algorithm. Furthermore, the bottleneck in our
distinct-degree factorization algorithm is multi-point polynomial evaluation.
We now indicate a direction in which further progress in reducing the time
complexity of distinct-degree factorization—and hence the complexity of the
general factoring problem—may be possible.

We define the special multi-point polynomial evaluation problem to be that
of evaluating a “large” polynomial with “small” coefficients at a “small” num-
ber of “large” points. To be precise, let f € F,[z] have degree n, and let
R = F,[z]/(f). The special multi-point polynomial evaluation problem is that
of computing g(a1),...,g(cm), where m < G oy, € R and gisa
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polynomial of degree n over R whose coefficients each have canonical represen-
tatives of degree at most n!/2.

Since the number of elements of F, required to encode both the input and
the output of this problem is only O(n*/?), it is not a priori clear that this
problem cannot be solved using, say, 07 (n®?) operations in F,. However, at
present the best algorithms we know of take O"(n?) operations in Fg. All of the
multi-point polynomial evaluation problems that arise in Algorithm 6.4 are of
this special type. As the next theorem indicates, any improvement in. _sc.;lvmg
this special problem will immediately lead to an improvement in the timing of

distinct-degree factorization.

THEOREM 6.6. Suppose that the special multi-point evaluation probf'em can
be solved using O"(n*) operations in F,, with 3/2 < & < 2. Then Algorithm 6.4
can be implemented with O"(n" + nlog q) operations in F,.

PROOF. Excluding steps 3, 4 and 6, and the invocations of Algorithm 6.2,
Algorithm 6.4 uses O"(n*? 4 nlogg) operations in F,. Using the a.lgoritl‘lm
for special multi-point evaluation, steps 3, 4, and 6 can be implemented with
O(n*) operations in Fg.

Now suppose we have a polynomial of degree n over R whose coefficients
have canonical representatives of degree at most n}/? and we want to evaluate
it at t points, where ¢ > n'/2. Using the algorithm for special multi-point eval-
uation, this can be done using 07((t/n*/?) n*) operations in F, by processing
the points n!/? at a time.

From the observation in the previous paragraph, if at iteration i of the loop
in step 7, Algorithm 6.2 is invoked with a polynomial of degree n;, then the
number of operations in F, used in this invocation is O”(n‘fzn:-‘_ln). The sum
of this quantity over all i is O"(n"), since k 2> 3/2. Thus the total time of the
algorithm is O"(n" + nlog¢) operations in Fy. O

We conjecture that & < 2 can be achieved.

7. Applications to other problems in finite fields

In this section, we use the techniques of the previous sections to obtain new
algorithms for several problems in finite fields.

PROBLEM 7.1. Given a polynomial of degree n over Fgy, determine if it is
irreducible.
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PROBLEM 7.2. Given a polynomial of degree n over F,, determine if all of its
irreducible factors are distinct and have the same degree, and if so, determine
the degree.

Problem 7.2 is interesting since our algorithm for the equal-degree factor-
ization problem is more efficient than our algorithm for factoring a general
polynomial. Therefore, we want to be able to quickly test if we are in this spe-
cial case, and if so, determine the degree of the irreducible factors since this is
required as input to our equal-degree factoring algorithm. We use a well-known
criterion for irreducibility (see Knuth 1981, Exercise 4.6.2-16).

FAcT 7.3. A polynomial f € F,[z] of degree n is irreducible if and only if
29" — 2 =0 mod f and ged(f,2%" — z) =1 for all primes t dividing n.

The following is an easy generalization, the proof of which we leave to the
reader.

FACT 7.4. Let f be a polynomial of degree n over F,. The irreducible factors
of f are all distinct and have the same degree if and only if 27" — z = 0 mod f
and for all prime powers t dividing n, ged( f, 27 —z) iseither 1 or f. Moreover,
if these conditions are met, then each irreducible factor of f has degree d =
n/ Il t, where t ranges over the set of maximal prime power divisors of n such
that 29" — z = 0 mod i

We can use Algorithm 5.2 to compute z?9" mod f for the various values of

'm in the above two facts. In Fact 7.3, their number is bounded by the number

of distinct prime divisors of n, which is O(log n/ loglog ) (see Hardy & Wright
1984, § 22.10). In Fact 7.4, this number is bounded by the number of prime
power divisors of n, which.is O(log n); however, we can achieve the same bound
O(log n/ loglog n) by performing a binary search on the exponents of the prime
factors. Recalling that Cr and Cs are time and space bounds for the modular
composition problem (see Fact 5.1), we have the following result.

!

THEOREM 7.5. Problems 7.1 and 7.2 can be solved by aIgorithrﬁs using
O((CT(n) + M(n))(log n)?/ loglog n + M(n) log q)

operations in F, and space for O(Cs(n)) elements of F,.
In particular, we have the following time and space bounds (time is mea-
sured in operations in F, and space is measured in storage for elements of

F.):
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(i) time O(n?(logn)® 4 n log n loglog n log g) and space O(n);
(ii) time O(n"" + nlogn loglogn logq) and space O(nlogn).

Related to the problem of testing irreducibility is that of constructing an
irreducible polynomial of given degree n over F,. A probabilistic algorithm of
Rabin (1980) for this problem uses O”(n®log ) operations in F,, and another
random method due to Ben-Or (1981) uses O(n? log ¢) operations, and Shoup
(1993) presents an O~ (n? + nlog q) method.

PROBLEM 7.6. Find a normal basis for Fn over Fy, i.e., an Fg-vector space
. n=—1
basis of the form a,af,...,a8  for Fgn.

In von zur Gathen & Giesbrecht (1990), this problem is solved probabilis-
tically with O"(n?loggq) operations in F,. The core of that algorithm is to
compute fB; = a? € Fgn for 1 < i < n and ged(Tocicn Biv',y" — 1) € Fonlyl,
for O(logn) many random a € Fgn. Using Algorithm 3.1 to calculate these
coefficients, we obtain the following improvement.

THEOREM 7.7. Problem 7.6 can be solved by a probabilistic algorithm using
an expected number

O(M(n*)(logn)? + M(n)loga),
or :
O((n*(logn)? + nlog q) - log n loglogn)

of operations in F, and space for O(n?) elements of Fy.

Similarly, one can determine the additive order of an element of Fyn with
O((n*logn + nlog q) - log n loglog n) operations in F,.

Interestingly, our algorithm is not the fastest way to compute what is usually
called a trace, namely in a field extension.

PROBLEM 7.8. Compute the trace Tf ./r (@) = Togicn = F,, given f €
F,[z] monic and irreducible of degree n, and a € Fgn = F.lz]/(f)-

Write T = T¢ /F, and { = (z mod f) € Fyn, and let f= Hoﬁ"<n(1—£q;y) €
F,[y] be the reverse of f. The expansion of the logarithmic derivative gives the
following equation in Fgn[[y]]:

yflf == T 6y = -3 T(E)W

1<i 0<j<n 1<i
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(see Lidl & Niederreiter 1983, §5.2). The first n coefficients of the left-hand
side are easy to calculate with a Newton iteration (see Borodin & Munro 1975,
§4.4), and give T(¢*) for 0 < 1 < n. Since

T( Y af)= Y aT(¢)

0<i<n 0<i<n

for agy...,an-1 € Fq, T can then be evaluated as an inner product.

THEOREM 7.9. Problem 7.8 can be solved with O(M(n)) operations in F, and
space for O(n) elements of F,.

8. Ulsing classical arithmetic

We have presented a factoring algorithm that uses O"(n?+n log ¢) operations in
F,. To achieve this running time, we have used asymptotically fast algorithms
for polynomial arithmetic. One might ask of what value our methods are in
the range of values for n in which classical polynomial arithmetic algorithms
are faster than the asymptotically fast algorithms. We attempt to answer this
question in this section. All running time estimates stated here assume classical
arithmetic is used—that is, we assume that M(n) = n® and MM(n) = n®.

The pioneering methods of Berlekamp (1970) and Cantor & Zassenhaus
(1981) give factorization algorithms that use either O(n®logq) operations in
F, and space for O(n) elements of F,, or O(n® 4+ n?log q) operations in F, and
space for O(n?) elements of F,.
~ Using the above values for M(n) and MM (n) in Fact 5.1(iii), one finds that
modular composition of polynomials over F, of degree n can be done using
classical arithmetic with O(n?(log n)?) operations in F,. In fact, this is a slight
over-estimate, and the running time of this algorithm is actually O((nlogn)?)
operations in F,. The space requirement is O(nlog n) elements of F,.

As a consequence, by implementing the Frobenius map with modular com-
position, we can solve the distinct-degree factorization problem by successively
computing the iterates of the Frobenius map one at a time using O(n®*(log n)*+
n? log q) operations in F, and space for O(n log n) elements of F,. Algorithm 5.2
solves the problem of equal-degree factorization with Q(n*(logn)® + n?log ¢)
operations in F, and space for O(nlogn) elements of F,.

It is a bit difficult to interpret the meaning of these results. After all, an
algorithm that uses only classical arithmetic might be so complicated in other
respects that even for small inputs it is no faster than a different algorithm
that uses asymptotically fast arithmetic. However, these results do suggest
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that our techniques could perhaps be used to implement an algorithr.n that is
more efficient than other algorithms in its use of time or space foor inputs of
moderate size. For equal-degree factorization, preliminary experiments seem

to indicate considerable improvements.

9. Deterministic equal-degree factorization

All of the algorithms we have discussed for squarefree and distinct-degree fac-
torization are deterministic, and those for equal-degree factorization are -pI"Oh’-
abilistic. In this section, we solve the latter problem with a deterministic

procedure that combines the methods of the previous sections with those in

Shoup (1991). : :
Suppose that the polynomial f € F,[z] to be factored is the product o

r distinct monic irreducible polynomials, each of the same degree d, sci that
n = deg f = dr. We denote by p the characteristic of Fg, and 1?vril‘.e g=p". We
assume that we have an element 7 € F, such that Fy = F,(n), i.e., the (.elernents
1,7,...,7"" ! are linearly independent over F,. In the usual representation of F,
as F,[z]/(g), with g € F,[2] irreducible of degree k, we can tak:z: n = (z mod g).
We describe and analyze a deterministic algorithm for this problem. The
number of operations in F, in one variant of this algorithm is

O (ndk + np'/? min{dk,r}), (9.2)
and in a second variant, it is
07 (n? + nkmin{d,r} 4 np'/* min{dk, r}). (9.3)

Combining the second variant with one of our distinct-degree fa,ctori'zaf;io_n

algorithms, we obtain a general factorization algorithm that is deterministic
d

and uses O~ (n? + n*k + nd/2 2112
oberations in F,, sincemin{d, r} < n'/* and min{dk,r} < (nk)l;z. Thus, m the
special case where p is bounded, this algorithm uses O (n? + n®?k) operations
in F,. :

;;t the end of this section, we briefly mention another variant that extracts
a single irreducible factor of an arbitrary polynomial using

O°(n® + nk + np'/?)

operations in F,. Thus, when p is bounded, this is O"(n® + nk), which is as
fast as our probabilistic algorithm to within logarithmic factors.

|

LOIMpUL CLolnplexity & | 1432 ) ractoring polynomials 213

As usual, we write f = fi--- f; and R = F,[z]/(f). Under the Chinese
Remainder isomorphism of R onto @i <i<r Fqe, we identify an element a € R
with its component representation (ay, ... , @), where each a; is in F,q, and we
call a; the ith component of a.

The (absolute) Berlekamp subalgebra A of R consists of those elements in R
whose components lie in the prime field F,. A set $ C R is called a separating
set if for all 1,7 with 1 <1 < j < r there exists @« € S whose ith and jth
components are not equal. :

. Computing a separating set in A lies at the heart of all known deterministic
factoring algorithms. Consider two distinct factors f; and f;. If S C Ais a
separating set, then we know that for some a € § with component representa-
tion (ay,...,a,), we have a; # ;. Therefore, the polynomial & — a; € Fy[z] is
divisible by f; but not f;, and its ged with f splits f; and f; apart. Now, given
a, we do not know the values of its components, but we do know that they lie
in Fp, so by trying all values of a in F,, we can find a polynomial & — a that is
divisible by one of f; or f; but not both.

The procedure just described requires time proportional to p in the worst
case. If p is large we can speed this process up as follows. Compute § =
(o= z)P-N/2 for 2 = 0,1,2,.... The ith component of 2 is x(e; — z), where ¥
is the quadratic character on F,. Thus, if x(ai — z) # x(a; — z), then either
B or B —1 is divisible by fi or f; but not both. It was shown in Shoup (1990)
that for any pair of distinct elements a,b € F,, the least nonnegative integer
z-such that x(a — 2) # x(b - z) is bounded by O(p!/?log p); this bound was
subsequently improved in Shparlinski (1992) to O(p'/?). Thus, the number of
values of z we need to try in order to separate f; from f; is O(p'/?).

If p is small and the size of S is not too large, we can use these observations to
obtain an efficient algorithm to completely factor f. Howevever, when p is small
it is the computation of a separating set in A that is actually the bottleneck
in deterministic factoring algorithms. Our main technical contribution in this
section is a faster method for computing a separating set.

Let T: R — R be the trace map that sendsa € Rtoa+aP + ... + af

k-1

THEOREM 9.1. Let

H=(y—8@y—£) (=" )=ho+hiy+--- + he13*' +y? € R[y).

Then the set
S={T(n"h.,):0<v<k 0<u<d)CA

is a separating set.
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PROOF. Let B be the subring of R consisting of those elements whose
components lie in F,. We claim the following two properties:

1. Each h, liesin B.
2. {ho,...,hq_1} is a separating set.

Let (Ry1,...,Rur) be the component representation of hy for 0 < u < d,
and let f; = z% + Zoﬂgd a,;z* with each a,; in Fg. Let (&1,...,&) be the

component representation of . Then we have f; = ogu<a(z—§ :" ), from whi.ch
it follows that hy; = ay; for0 Su<dand 1< i < r. The claims now easily

follow.
The map T acts component-wise on B as the trace T, ¢, from F, to Fp.

So it is clear that § C A. Giveniand j with1 <1 < j < r, we choose h,
such that hy; # hy;. Then, since T¢ /f, is an F,-linear map from F, onto
F,, and since 1,7,...,n%! form a basis for F; over F,, we see that for some

v < k we have Tg sk, (n"hu;i) # T.:q'/pp(n”hw-). For this.. u and v, t'he ith and
jth components of T'(n"h,) are not equal, and hence S is a separating set. O

The observation that the coefficients of H form a separating set was ma.t.ie
in Shoup (1990). We now address the complexity of computing the elements in
this separating set.

THEOREM 9.2. Let H € R|y] be the polynomial in Theorem 9.1.

(i) There is a deterministic algorithm that computes the coefficients of H
using

O(M(dn)logd + M(n)dlogq)
operations in F,, and space for O(dn) elements of F,.

(ii) There is a deterministic algorithm that computes the coefficients of H
using

O(M(dn)rlogd + M(n)log ¢)
operations in F,, and space for O(dn) elements of F,.

(iii) There is a deterministic algorithm that takes as input an element @ € R
and computes T'(na) for 0 < v < k using

O(M(n)log g + nM(k)log k)

operations in F,, and space for O(kn) elements of Fs.
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ProoF. We can compute {,E",...,E"‘d_l, where { = (zmod f) € R, by
repeated squaring using O(d log ¢) operations in R, and hence O(M(n)dlog q)
operations in F,. Alternatively, we can just compute £? using repeated squar-
ing, and then apply Algorithm 3.1. We can form the product [Tocyca(y — €7°)
€ Ry using a divide-and-conquer algorithm with O(M(dn) log d) operations
in F,. This proves (i) and (ii). For (iii), we compute the quantities

ﬁm=l}”wandaw=a"w for0<w<k

by repeated squaring using O(M(n) log ¢) operations in F,. Then for 0 < v < k,

we have
T(n’e) = Z Moo
0<w<k

The next section provides an algorithm that given the n,’s and the a,’s com-
putes all of these weighted power sums with O(M(k)log k) operations in R,
and hence O(nM(k)log k) operations in F,, since the multiplications involve
at most one element outside of F; (Theorem 10.4). That algorithm also uses
space for O(k) elements of R. O

Part (iii) of this theorem says that for a given coefficient k, of H, we can
compute T'(n'h,) for 0 < v < k using O"(n log ¢) operations in F,. To compute

‘the entire separating set S in Theorem 9.1, we could repeat this for each of

the d coefficients of H. This would require O"(ndlog ¢q) operations in Fg, which
for fixed p is optimal up to logarithmic factors, but is more than we can allow
if we want to achieve the running time bound (9.3). However, as we shall see
below, it is possible to avoid computing S in its entirety, and it is sufficient
to consider min{d,r} coefficients of H. Thus, we can compute the required
portion of S using only O (min{d, r}nlog ¢) operations in F, (plus O"(dn) to
determine that portion). '

Before we describe our deterministic equal-degree factorization algorithm,
we need a few more observations. A set U C F,[z] of monic nonconstant
polynomials is called a refinement of f if f = [],cy g. We use the following two
operations. : |

1. Refine(U, ), where U is a refinement of f and o € R. This replaces U
by the refinement U’ obtained in the following way: for each g € U, if
g1 = ged(g, &) is a trivial divisor of g, put g in U’; otherwise, put ¢, and
g/g in U,

2. Useful(U, ), where U .is a refinement of f and @ € R. This evaluates to
true if (& rem g) ¢ F, for some g € U; otherwise, it evaluates to false.
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The following lemma addresses the cost of these operations.

LEMMA 9.3. Operation Refine(U,a) can be performed using O(M(n)logn)
operations in F, and space for O(n) elements of F,. The predicate Useful(U, @)
can be evaluated using O(M(n)logr) operations in Fy and space for O(n)
elements of F. :

PROOF. To implement either of these operations, we begin by computing
& rem g for all g € U. Since #U < r, this can be done with O(M(n)logr)
operations in F, and space for O(n) elements in F, in a manner similar to the
proof of Lemma 2.1. This gives us the bound for computing UsefullU, ). The
algorithm for Refine(U, @) then proceeds by computing gcd(é& rem g, g) for all
g € U. This takes O(M(n)log n) operations in F, and space for O(n) elements
inF,. O

ALGORITHM 9.4. Deterministic equal-degree factorization.

Input: A squarefree monic polynomial f over Fq of degree n, a positive integer
d, and an element n € F,. It is assumed that f is the product of r irreducible
factors, each of degree d (so that n = rd), and that Fg = Fpx =Fy(n).
Output: The set of monic irreducible factors of f.

1. In the notation (3.1), compute the coefficients of
d=1
He(y-O—¢)—-§)
=ho+hiy+---+ ha_1y?~! + y¢ € Ry

2. SetU = {f}.

3. Foru=0,...,d—1 do step 4.

4 If Useful(U, h,), then do steps 5 and 6.

3. Compute (ag, Q1. .., Qk-1) = (T(hu),T(qhu),...,T(r}"“hu)).
6. Forv=0,...,k —1 do steps 7 and 8.

7 Set z = 0.

8. While Useful(U, o) do steps 9 through 11.

9. Refine(U, o, — 2).

10. Ifp # 2, then Refine(U, (o, — 2)®~V/? —1).
11, Replace z by z + 1.

12. Return U.
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THEOREM 9.5. Algorithm 9.4 works correctly as specified. If step 1 is imple-
mented using Theorem 9.2(i), then it uses

O(M(dn) log d + M(n)dlog(rq)

+ min{d, r}[nM(k)log k + M(n)klogr] + min{dk,r}pl"zJM(n],log{np))

or, more briefly, :
O"(ndk + np'/* min{dk,r})

operations in F,. If step 1 is implemented using Theorem 9.2(ii), then it uses

O(min{d, r M (k) log k + M(n)k log(pr)]
+M{(dn)r log d + fin{dk, r}p/*M(n) log(np))
or, more briefly,
O"(n? + nkmin{d,r} + np'/? min{dk,r})

operations in F,. In either case, it uses space for O((d + k)n) elements of F,.

PRroOOF. It follows immediately from Theorem 9.1 that the algorithm would
work correctly if the two Useful tests were left out. However, their insertion
only avoids unnecessary work; this proves correctness.

To estimate the running time, notice that if Useful(U, k,) at step 4 is true,
then execution of steps 5 and 6 produces a proper refinement of U; hence, steps
5 and 6 are executed at most min{d,r} times. Similarly, the inner loop at steps
9 through 11 is executed at most O(p"/? min{dk,r}) times.

The statements about the running time follow from these observations,
along with the estimates from Theorem 9.2. The space bound is clear. O

REMARK. Notice that Algorithm 9.4, using Theorem 9.2(ii) to implement
step 1, discovers a nontrivial factor after executing just O"(n? + nk + np'/?)
operations in F,. This implies that there is a deterministic algorithm that takes
as input an arbitrary polynomial f € F,[z] of degree n, and produces as output
a single irreducible factor of f using O(n? + nk 4 np'/?) operations in F,.
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10. Generalized power sums

The algorithm in the proof of Theorem 9.2(iii) uses as a subroutine an
algorithm for the following general problem: given ag, .. ., Q-1 and Bo, .. .y Be-1
in a ring R, compute the weighted power sums )

ve= 3. oib;

o<i<k

for0 <f< k.

In this section, R is an arbitrary commutative ring with unity. This problem
is equivalent to computing the matrix-vector product V7o, where V € R¥*k ig
the Vandermonde matrix with V;; = oi=) and b= (Bo,...,fe-1)T € R*. We
shall present an algorithm for this problem that uses O(M(k)log k) operations
in R, and space for O(k) elements in R.

An algorithm for this problem is described in Canny et al. (1989). It uses
O(M(k)log k) operations in R, and it is possible—using Lemma 2.1—to im-
plement this algorithm so that it uses space for O(k) elements in R. This
algorithm works by first computing ¢ = V-1b, and then applying the Hankel
matrix VTV to ¢. In their application, R is a field and the oy’s are distinct.
The use of this algorithm over an arbitrary ring R is hindered by the fact that
it performs several divisions by elements in R, and it is not clear that these
can easily be avoided.

There are general methods by which one can transform an algebraic circuit
for computing the matrix-vector product Mb into an algebraic circuit of about
the same size for computing M7b (Baur & Strassen 1983, Kaminski et al. 1988).
Since computing Vb is known to take O(M(k)log k) operations in R, the same
bound applies to computing V7b. The algorithms that res ult from these general
transformations require space proportional to their running times.

Either of these methods would have sufficed to obtain the running time
bound in Theorem 9.2(iii); however, our algorithm below is still perhaps of
interest in itself, since it avoids divisions, requires space for only O(k) elements
of R, and has a fairly natural description. We start with an algorithm for
computing the first nontrivial elements of a linearly recurrent sequence.

LEMMA 10.1. Suppose we are given elements c1, ..., Ck and Yo, . - -»Yk-1 in K.
For £ > k let v; be defined by the recurrence

Yo+ e1Ye-r + -+ erve-k = 0. (10.4)

Then we can compute 7k, . . ., Yax—1 using O(M(k)) operations in R and space
for O(k) elements in R.

PROOF. Define the polynomials
G": z CJ'I"’;, U= z ‘7ij, V= Z ’7;,+J;xj,
0<i<k 0<j<k 0<j<k
where ¢ is taken to be 1. Now consider the products
Gl =5% u;z’, GV = Y vz’

0<j<2k 0<i<2k

Clearly (10.4), for k < € < 2k, is equivalent to the condition that
G- (U + 2*V) rem z*

have degree less than k. Let GU = Fp+ z* Fy, where Fy and Fy are polynomials
of degree at most k — 1. Then we can rewrite this as :

GV = —F, mod z*.

Let H € R|z] have degree less than k and satisfy HG = 1 mod z*; this exists
since ¢g = 1. Then we have

V = —HF, mod z*.

Thus we can compute H by a Newton iteration, find F from GU, and obtain
the desired outputs from V = —HF; rem z*. All this can be done within the
stated time and space bounds. O

Our algorithm for computing weighted power sums is based on the following
lemma. '

LEMMA 10.2. Let ag,...,ax_; and Bo,...,Bk-1 be in R. Define v¢ € R for
£>0,G € R[z), and ¢,...,cx € R by

Vo= z: afﬁ;, G= ]___[ (1 .- cn;a:) = z ijj = R[.‘C]
0<i<k 0<ji<k 0<i<k
Then

Ye+ Y1+ -+ aye-r =10 for all £ > k.

PRroOF. Let

G =5 ezt = ] (z - ).

0<i<k 0<j<k



220 von zur Gathen and Shoup comput complexity 2 (1992

comput complexity 2 (1992) Factoring polynomials 221

Then for £ > k, we have

Y Grei = Y, 6 ), o' B;

0<i<k 0<j<k  0<i<k
=3 a8 ) c,vo::‘" = N af~*;G(a;) = 0. a
0<i<k 0<i<k 0<i<k

ALGORITHM 10.3. Weighted power sums. .
Input: Elements o, .. .,-1 and Bo,. .. , Br-1 in R, where k is a power of 2.
Output: Yo, .-, Yk—1 and Cq, . ..,Ck, as defined in Lemma 10.2.

1. If k =1, then return fo and (1 — aoz).

2. Otherwise, divide the problem into two pieces of size k/2, and recursivel]
compute the following quantities:
(i) % = Toci<k/2 %Pi for 0 < £ < k/2,
(i) the coeficients of G' = (1 —apz) -+ (1 - Qtkj2-17)
(iii) 1 = Cipcick o for0 <L & kf2,
(iv) the coefficients of G" = (1 — akpz) -+ (1 - Qg-17)

3. Extend the sequences (Yg,---sYkj2—1) 20d (jg,...,'y,’,‘)«z_l) to the :am
sponding sequences of length k using the coefficients of G' and G", an

the algorithm of Lemma 10.1.
4. For0< € < k, set v, = 74+74, and compute the coeflicients of G=G'G

5. Return 7o, . ..,7k-1 and the coefficients of G.

THEOREM 10.4. Algorithm 10.3 works correctly as specified, and uses O(M(
log k) operations in R and space for O(k) elements in R.

The proof is straightforward. In this algorithm, we assumed for simpl.i_c.
that k is a power of 2. Of course this restriction can easily be removed, eitl
by modifying the algorithm slightly, or by padding the input.
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