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Abstract

We show that for arbitrary positive integers a1, . . . , am, with prob-
ability 6/π2 + o(1), the gcd of two linear combinations of these in-
tegers with rather small random integer coefficients coincides with
gcd(a1, . . . , am). This naturally leads to a probabilistic algorithm for
computing the gcd of several integers, with probability 6/π2 + o(1),
via just one gcd of two numbers with about the same size as the initial
data (namely the above linear combinations). This algorithm can be
repeated to achieve any desired confidence level.
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1 Introduction

We let a = (a1, . . . , am) ∈ N
m be a vector of m ≥ 2 positive integers, x =

(x1, . . . , xm),y = (y1, . . . , ym) ∈ N
m be two integer vectors of the same length,

where N = {1, 2, . . .}, and consider the linear combinations

a · x =
∑

1≤i≤m

aixi and a · y =
∑

1≤i≤m

aiyi.

Then clearly gcd(a1, . . . , am) divides gcd(a · x, a · y), and we want to show
that in fact, equality holds quite often.

For a vector u = (u1, . . . , um) ∈ R
m we define its height as

h(u) = max
1≤i≤m

|ui|.

For an integer M , we denote by ρa(M) the probability that, for x,y chosen
uniformly in N

m with height at most M ,

gcd(a1, . . . , am) = gcd(a · x, a · y). (1)

Assuming that the linear combinations a · x and a · y behave as random
integer multiples of gcd(a1, . . . , am), it is reasonable to expect that (1) holds
with probability ζ(2)−1 = 6/π2 where ζ(s) is the Riemann zeta function,
and indeed we show that this holds asymptotically. In particular, our result
implies that one can choose M of order ln N in the algorithm of [2] rather
than of order N as in Corollary 3 of [2], thus reducing quite dramatically the
size of the operands which arise in the algorithm of [2].

The lower bound on ρa(M) plays a crucial role in the analysis of a fast
probabilistic algorithm for computing the gcd of several integers which has
been studied [2]. This algorithm, for any δ > 0, requires only about

1

ln(π2/(π2 − 6))
ln δ−1 ≈ 1.06802 · ln δ−1 (2)

pairwise gcd computations, to achieve success probability at least 1−δ (where
ln z is the natural logarithm of z > 0). For comparison, it is noted that the
naive deterministic approach may require up to m− 1 gcd computations. A
drawback of that algorithm is that for its proof of correctness, the arguments
given to the gcd computations are substantially larger than the original in-
puts. In [4] we give an asymptotic lower bound on ρa(M) (of the expected
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order ζ(2)−1) which holds starting with very small values of M . Here we
present a completely explicit and slightly stronger form of that result. More
importantly, we obtain an asymptotic formula for ρa(M) which holds in a
wide range of parameters.

Our results now imply that one may choose the operands of the algorithm
of [2] of approximately the same size as the inputs. An exact cost analysis
depends on the cost of the particular gcd algorithm, a variety of which can
be found in [3].

Furthermore, we demonstrate that our result is rather tight and it fails if
M is chosen substantially smaller than required for our result.

A well-known fact says that gcd(a1, . . . , am) = 1 with probability ζ−1(m)
for random integers a1, . . . , am; see [5], Theorem 332, for a precise formulation
in the case m = 2. It is important to not confuse our result which holds for
arbitrary (that is, “worst-case”) inputs with the “average-case” result which
follows from this fact.

2 Main Results

We show that ρa(M) equals ζ(2)−1 asymptotically in a wide range of param-
eters. More precisely, we have the following.

Theorem 1. Let m ≥ 3, a ∈ Z
m be of height at most N , and

M ≥ max{9m, lnN}.

Then

|ρa(M) − ζ(2)−1| ≤ 19

ln(M/m)
.

Proof. As in [2], it is enough to consider only the case where gcd(a1, . . . , am) =
1. We set Q = 1

4
ln(M/m), and let L be the set of all pairs of integer vectors

x,y ∈ N
m with h(x), h(y) ≤ M , where N = {1, 2, . . .} For an integer k ≥ 2,

we denote by P (k) the largest prime divisor of k, and set P (1) = 1. We
define the following subsets:

• Q = {(x,y) ∈ L : Q ≥ P (gcd(a · x, a · y)) > 1},

• R = {(x,y) ∈ L : M > P (gcd(a · x, a · y)) > Q},

• S = {(x,y) ∈ L : P (gcd(a · x, a · y)) ≥ M},
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• T = {(x,y) ∈ L : p| gcd(a · x, a · y) for some prime p ≤ Q}.

Obviously Q ⊆ T and T \ Q ⊆ R ∪ S, so that #T − #Q ≤ #R + #S.
Therefore we have

1 − ρa(M) = M−2m (#Q + #R + #S) ≤ M−2m (#T + #R + #S) .

and
1 − ρa(M) = M−2m (#Q + #R + #S) ≥ M−2m#T .

From the above inequalities together we derive

|ρa(M) − ζ(2)−1| ≤ M−2m
(

|#T − (1 − ζ(2)−1)M2m| + #R + #S
)

. (3)

For an integer d ≥ 1, we denote by Ud(M) the set of all integer vectors
x ∈ N

m with h(x) ≤ M and d|a · x, and put Ud(M) = #Ud(M). Because
gcd(a1, . . . , am) = 1 , we obviously have Up(p) = pm−1 for any prime p. Then,
for any squarefree d, by the Chinese Remainder Theorem, we conclude that
Ud(d) = dm−1, and Ud(dK) = Kmdm−1 for any integer K.

It is also clear that for any prime p

Up(M) ≤ ⌈M/p⌉Mm−1 ≤ Mm/p + Mm−1. (4)

By the inclusion exclusion principle we have

M2m − #T =
∑

d≥1
P (d)≤Q

µ(d)Ud(M)2 (5)

where µ is the Möbius function. We recall that µ(1) = 1, µ(d) = 0 if d ≥ 2
is not squarefree, and µ(d) = (−1)ν(d) otherwise, where ν(d) is the number
of prime divisors of d, see [5], Section 16.2. Using the bound of Theorem 4
of [7] on

ϑ(x) =
∑

p<x

ln p, (6)

we have

∏

p<Q

p = exp(ϑ(Q)) ≤ exp

(

Q

(

1 +
1

2 lnQ

))

≤ exp(2Q) =

(

M

m

)1/2

,

since M ≥ 732m. Thus for any squarefree d with P (d) ≤ Q, we have
d ≤ (M/m)1/2.
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For x > 0, we have (1 + x)1/x ≤ e, and thus with y = mx we have

(1 + x)m = (1 + x)y/x ≤ ey =
∑

i≥0

yi

i!

< 1 + y +
y2

2

∑

i≥0

yi = 1 + y +
y2

2(1 − y)
≤ 1 + 2y

provided that 0 < x ≤ 2/(3m). Hence

Ud(M) ≤ Ud

(

d

⌈

M

d

⌉)

= dm−1

(⌈

M

d

⌉)m

< dm−1

(

M + d

d

)m

=
Mm

d

(

1 +
d

M

)m

≤ Mm

d

(

1 +
2md

M

)

for M ≥ 3md/2. Similarly, (1 − x)1/x ≥ 1/4 for 0 < x ≤ 1/2, and thus for
0 < mx ln 4 ≤ 3 we have

(1 − x)m ≥ e−mx ln 4 = 1 − mx ln 4 +
∑

i≥2

(−mx ln 4)i

i!
≥ 1 − mx ln 4,

Ud(M) ≥ Ud

(

d

⌊

M

d

⌋)

= dm−1

(⌊

M

d

⌋)m

> dm−1

(

M − d

d

)m

=
Mm

d

(

1 − d

M

)m

≥ Mm

d

(

1 − md ln 4

M

)

for M ≥ (dm ln 4)/3. We now assume that M ≥ 3md/2, and then we have
∣

∣

∣

∣

Ud(M) − Mm

d

∣

∣

∣

∣

≤ Mm

d
· 2md

M
= 2mMm−1.

We can estimate the difference of the squares as follows.
∣

∣

∣

∣

Ud(M)2 − M2m

d2

∣

∣

∣

∣

≤
∣

∣

∣

∣

Ud(M) − Mm

d

∣

∣

∣

∣

·
∣

∣

∣

∣

2Mm

d
+ 2mMm−1

∣

∣

∣

∣

≤ 2mMm−1 · 2mMm

d
·
(

1

m
+

d

M

)

≤ 4m2d−1M2m−1 · 2

m
= 8md−1M2m−1.
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As we have seen, if d is squarefree and P (d) ≤ Q, then d ≤ (M/m)1/2 ≤
2M/(3m), and thus the above bounds apply.

A truncated ζ-product can be estimated as follows:

∣

∣

∣

∣

∏

p>Q

(

1 − 1

p2

)−1

− 1

∣

∣

∣

∣

=
∑

p|k⇒p>Q

1

k2
− 1 <

∑

k≥Q

2

k(k + 1)
=

2

Q
.

The error in the main term for our approximation to ρ can be bounded
in the following way. We use the harmonic estimate

∑

d≤x

d−1 ≤ 2 lnx

for x ≥ 3 to derive

∣

∣#T − (1 − ζ(2)−1)M2m
∣

∣ = |
∑

d≥1
P (d)≤Q

µ(d)Ud(M)2 − ζ(2)−1M2m|

≤
∣

∣

∣

∣

∑

d≥1
P (d)≤Q

µ(d)
M2m

d2
− ζ(2)−1M2m

∣

∣

∣

∣

+
∑

d≥1
P (d)≤Q

d squarefree

8mM2m−1

d

≤ M2m

∣

∣

∣

∣

∏

p≤Q

(

1 − 1

p2

)

− ζ(2)−1

∣

∣

∣

∣

+ 8mM2m−1
∑

d2≤M/m

1

d

= ζ(2)−1M2m

∣

∣

∣

∣

∏

p>Q

(

1 − 1

p2

)−1

− 1

∣

∣

∣

∣

+ 8mM2m−1 ln(M/m)

≤ ζ(2)−1M2m · 2Q−1 + 8mM2m−1 ln(M/m)

= M2m

(

2ζ(2)−1Q−1 +
8m ln(M/m)

M

)

.
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For #R, using (4) and the inequality (a + b)2 ≤ 2(a2 + b2) we get

#R ≤
∑

Q<p<M

Up(M)2 ≤ 2
∑

Q<p<M

(

M2m

p2
+ M2m−2

)

≤ 2M2m
∑

p>Q

(

1

p(p + 1)
+

1

(p + 1)(p + 2)

)

+ 2M2m−2
∑

p<M

1

≤ 2M2m
∑

k≥Q

1

k(k + 1)
+ 2M2m−1

= M2m

(

2

Q
+

2

M

)

.

Finally, using (4) again, we find

#S ≤
∑

p≥M

Up(M)2 ≤ Mm−1
∑

p≥M

Up(M)

= Mm−1
∑

h(x)≤M

∑

p≥M
p|a·x

1 ≤ Mm−1 · Mm ln(mMN)

ln M
,

since a · x ≤ mMN , and each such number has at most ln(mMN)/ ln M
many prime factors p ≥ M .

Putting everything together and using (3), we obtain

|ρa(M) − ζ(2)−1| ≤ 2

ζ(2)Q
+

8m ln(M/m)

M
+

2

Q
+

2

M
+

ln(mMN)

M ln M
.

It is now convenient to define λ = M/m. Using that

ln(mMN)

M lnM
≤ ln(M2N)

M ln M
=

2

M
+

lnN

M ln M
≤ 2

M
+

1

ln λ

for M ≥ ln N , and the trivial bound 2/M ≤ 2/(3λ), we derive

|ρa(M) − ζ(2)−1| ≤ 8ζ(2)−1

ln λ
+

8 lnλ

λ
+

8

ln λ
+

2

3λ
+

2

3λ
+

1

ln λ

=
8ζ(2)−1 + 9

ln λ
+

8 lnλ + 4/3

λ
.

Since 8ζ(2)−1 + 9 < 13.9 and for λ = M/m ≥ 9 we have

8 lnλ + 4/3

λ
≤ 5.1

ln λ
,

the result now follows.
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We now show that for a small m, M must grow logarithmically with N
for reasonably large success probability.

Theorem 2. For any m ≥ 3 and M, N with 4mM2m ln M ≤ ln N , there is

a vector a ∈ Z
m of height at most N such that

ρa(M) ≤ (1 + o(1))M−2 (ln M)2

as M → ∞.

Proof. The hypothesis implies that 2M2m ≤ ln N , and we may assume that
N is large enough.

Let P be the set of the first T = M2m primes p with p > M2, and
denote by (x,y) 7→ px,y an arbitrary bijection which maps each (x,y) =
(x1, . . . , xm, y1, . . . , ym) ∈ N

m×N
m of height at most M to a prime px,y ∈ P.

Let U be the set of such pairs of vectors (x,y) with x1y2 6= x2y1, and let V
be the set of all other pairs.

If (x,y) ∈ U , then obviously 0 < |x1y2 − x2y1| < M2 < px,y, and we
can find a unique integer solution 0 ≤ rx,y, sx,y < px,y to the system of
congruences

x1rx,y + x2sx,y + x3 + · · ·+ xm ≡ 0 mod px,y,

y1rx,y + y2sx,y + y3 + · · ·+ ym ≡ 0 mod px,y.

Using the Chinese Remaindering Theorem, we now define integers a1, a2 with

0 ≤ a1, a2 <
∏

(x,y)∈U

px,y <
∏

p∈P

p,

a1 ≡ rx,y mod px,y,

a2 ≡ sx,y mod px,y,

for each (x,y) ∈ U . We denote by q the largest prime in P. Thus q is the
smallest number satisfying

π(q) ≥ M2m + π(M2),

and hence q ≤ 3mM2m ln M . We set a = (a1, a2, 1, . . . , 1). Under the hy-
pothesis on N , we have

h(a) ≤ exp(ϑ(3mM2m lnM)) ≤ exp(4mM2m ln M) ≤ N,
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where ϑ(x) is defined by (6). We also see that

px,y | gcd(a · x, a · y)

for all (x,y) ∈ U . Therefore ρa(M) ≤ M−2m#V.
To estimate the cardinality of V, we note that if x1y2 = x2y1 then for each

pair (x1, y2) there are at most τ(x1y2) possible values for the pair (x2, y1),
where τ(n) is the number of positive integer divisors of n. We recall that
τ(n) =

∏

p|n(αp +1), where αp is the multiplicity of the prime p in n, so that

τ(ab) ≤ τ(a)τ(b) for any positive integers a, b, since α+β+1 ≤ (α+1)(β+1)
holds for any α, β ≥ 0. Therefore,

#V ≤ M2m−4
∑

1≤x1≤M

∑

1≤y2≤M

τ(x1y2) ≤ M2m−4
∑

1≤x1≤M

∑

1≤y2≤M

τ(x1)τ(y2)

= M2m−4

(

∑

1≤z≤M

τ(z)

)2

= (1 + o(1))M2m−2 (ln M)2 ,

as M → ∞ (see [5], Theorem 320), which concludes the proof.

Of course, gcd(a1, . . . , am) is trivial to determine in the example con-
structed in the proof. The example only shows that one has to be care-
ful when designing a universally applicable algorithm. The gap between
the “sufficient” bound M ≥ ln N (ignoring m) and the “necessary” bound
M ≥ (ln N)1/6 is only polynomial. For example, we see from Theorem 2 that
for m = 3, we have to choose M of order at least (ln N)1/6 to guarantee that
ρa(M) is not too small.

3 Algorithmic Implications

Theorem 1 implies that for any a1, . . . , am, one can compute gcd(a1, . . . , am)
probabilistically as the gcd of two integers of asymptotically the same bit
lengths as the original data, while the result of [2] only guarantees the same
for two integers of bit lengths twice more. The probability of success in both
cases is, asymptotically, at least ζ(2)−1 = 6/π2 = 0.6079 . . .. Our algorithm is
an attractive alternative to the m-step (deterministic) chain of computation

gcd(a1, . . . , am) = gcd(gcd(a1, a2), a3, . . . , am)

= gcd(. . . (gcd(gcd(a1, a2), a3), . . . , am).
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For illustration, we take l-bit primes p1, . . . , pm, p = p1 · · · pm, and ai =
p/pi for i ≤ m. Then indeed m − 1 steps are necessary until the gcd, which
equals 1, is found.

After i−1 steps, the current value of the gcd has about (m− i)l bits, and
the reduction of the (m − 1)l-bit ai+1 modulo this gcd takes about 2l2(m −
i)(i − 1) operations in naive arithmetic; see [3], Section 2.4. This comes to
a total of about l2m3/3 operations. If one gcd of n-bit integers costs about
cn2 operations, for a constant c, which amounts to the total cost of about
cm3/3 operation. Thus the overall cost is about cl2m3(1 + c)/3 operations.

In our algorithm, we can choose xi and yi of log(ml) bits (where log z is
the binary logarithm of z > 0). The inner products together cost just over
2lm2 log(ml) operations, and the single gcd about cl2m2. The latter is the
dominant cost, and thus our algorithm is faster by a factor of about m/3
than the standard one.

In other words, if k < m/3, maybe k ≈ √
m, and confidence at least

1 − ζ(2)−k is sufficient, then the k-fold repetition of our algorithm is faster.
(In practice, one would not just repeat, but reduce the inputs modulo the
gcd candidate obtained so far, and either find that it divides all of them and
thus is the true gcd, or continue with the smaller values.)

When we have m rational numbers whose denominators are positive in-
tegers p1, . . . , pm, then their sum can be expressed as a fraction with denom-
inator

lcm (p1, . . . , pm) = p/ gcd(a1, . . . , am),

where p = p1 · · ·pm and ai = p/pi for i ≤ m, as above. Thus the advantage
explained above applies to this important type of computation.

We can repeat our algorithm several times, adding each time the gcd
computed (which is expected to be not much larger than the true gcd) to the
list, until the same gcd is returned twice in a row. If one wants to guarantee
correctness, one can then divide all elements in the list by the guessed gcd.
If it divides evenly all elements, it is the true gcd.

An alternative approach would be to iteratively replace each element in
the list by its remainder modulo the smallest element in the list. This will
actually calculate the gcd without any gcd computation. Of course, the latter
are hidden in the repeated divisions with remainder. This goes to show that
our “model” of counting gcd’s and ignoring all other operations is intuitively
apparent in our algorithm but cannot be turned into a rigorously defined
“model of computation”, as long as the gcd can be calculated by the “other”
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computations.

4 Remarks and Open Questions

The approach of [2] leads to an algorithm for the extended gcd; see [3] for the
background on this problem. Namely, solving the the extended gcd problem
for a · x and a · y we obtain a relation

c1a1 + . . . + cnan = d

for some integers c1, . . . , cn, d with d > 0. Repeating this the appropriate
number of times, given by (2), and choosing the relation with the smallest
value of d, we solve he extended gcd problem with probability at least 1− δ.

It would be very interesting to find the smallest possible rate of growth
of M , as a function of N and m for which ρa(M) is bounded away from
zero uniformly for all vectors a ∈ Z

m of height at most N . In particular, it
would be important to reduce the gap between the regions of parameters in
Theorems 1 and 2 apply.

Finally, we recall that randomness is an expensive algorithmic resource.
So it would be interesting to study gcd(a · x, a · y) where the vectors x, y

are chosen from some parametric family of vectors for a random value of the
parameter and thus require few random bits for their description that random
independent vectors; see [1, 6] for concrete examples of such algorithms for
other number theoretic problems.
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