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i THE COMPUTATIONAL COMPLEXITY OF
RECOGNIZING PERMUTATION
FUNCTIONS

KEJu MA AND JOACHIM VON ZUR GATHEN

Abstract. Let I} be a finite ficld with ¢ elements and f € F(z) a
rational function over ;. No polynomial-time deterministic algorithim
is known for the problem of deciding whether f induces a permutation
on [f,. The problem has been shown to be in co-R C co-N"P, and in
this paper we prove that it is in R C AP and hence in ZPP, and it
is deterministic polynomial-time reducible to the problem of factoring
univariate polynomials over F,. Besides the problem of recognizing prime
numbers, it seems to be the only natural decision problem in ZPP
unknown to be in P. A deterministic test and a simple probabilistic test
for permutation functions are also presenterd.

Subject classifications. 68Q15, 68Q25; 11Y16, 12Y05.

1. Introduction

i Let g be a power of a prime, F, a finite ficld with ¢ elements, f = g/h € F,(z)
an arbitrary rational function with g,h € F,[z] and ged(g, h) = 1. Then f
induces a partial mapping ¥, — F, via a — f(a) for all a« € F, with h(a) # 0.
If f is total (i.e., h(a) # 0 for all a € F,) and bijective, then f is called a
permutation function over . In the special case h = 1, so that f = g € F,[z],
it is called a permutation polynomial over F,.

Permutation functions have been studied since the last century. In recent
years considerable attention has been given to their potential applications in
public-key cryptography. Further references can be found in the survey articles
#3 Lidl & Mullen (1988, 1993) and Mullen (1993).
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The importance of permutation functions lies in the fact that they connect
two essential components of the theory of finite fields: combinatorics and al-
gebra. The permutation property and the applications in cryptography are of
a combinatorial nature, and the use of polynomials or rational functions for
representing these combinatorial objects allows powerful algebraic methods to
be employed. Tt is the same type of synthesis that has worked very successfully
in the theory of error-correcting codes.

The efficient representation of permutations on E, is a nontrivial computa-
tional task: a general representation via enumeration requires exponential size
(in log g). Algebra presents a partial solution by representing permutations as
polynomials or rational functions over F,. Such permutation functions always
exist, since any total function over I, can be represented by a unique polyno-
mial of degree less than ¢, computable by interpolation over F,. This introduces
the degree of the representing polynomial or rational function as an interesting
measure. A fundamental problem for manipulating these objects is to deter-
mine when an arbitrary rational function represents a permutation on F,. We
denote by PermFunction this decision problem, and it includes, of course, the
special problem of testing whether an arbitrary polynomial is a permutation
polynomial. For a random polynomial f € F,[z] of degree < g, the probability
that f is a permutation polynomial is q!/¢? & e 7.

If f has degree n = max{deg g,deg h}, then its input size is O(nlogq) bits
under the dense representation of polynomials; we may always assume that
n < g, since a’ = a for all a € F,. No polynomial-time (in nlog q) deterministic
decision procedure is known for Perm Function.

Based on the subresultant approach introduced in von zur Gathen (1991a),
Ma & von zur Gathen (1993) recently designed a fast random polynomial-time
test for PermFunction, using O(nlog ¢) operations in F, (i.e., essentially linear
in the input size), or O"(nlog®q) bit operations. Here we use the “soft O
notation to ignore logarithmic factors:

s =07(t) <> s = O(tlog" t) for some constant k.

The resulting test has one-sided error for the complement (“No-biased”),
so that if the input f is a permutation function, it returns Yes; if f is not,
it returns Yes with exponentially small probability. This demonstrates that
PermFunction is in co-R C co-N"P.

Since f = g/h is not a pérmutation function if and only if [ is either not
total or not injective, it is trivial that PermFunction € co-N'P: any a € I, with
h(a) = 0 or (a,b) € F? with a # band f(a) = f(b) is a certificate. On the other
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hand, it is not clear whether PermFunction is in N'P. What would constitute
a “succinct certificate” that all ¢ clements in F, are images of f?

Among the very few natural decision problems in NP N co-N'P unknown
to be in P, the most celebrated one is the problem Prime of recognizing prime
numbers (Pratt 1975). Solovay & Strassen (1977), and later Miller (1976) and
Rabin (1980), designed random polynomial-time tests for Prime that are No-
biased, and thus proved that Prime € co-R. Building on results of Goldwasser
& Kilian (1986), Adleman & Huang (1992) established that Prime is in ZPP —
R N co-R by giving a complementary “Yes-biased” probabilistic polynomial-
time test, albeit a rather impractical one. Assuming the Extended Riemann
Hypothesis (ERH), Miller (1976) showed that Prime € P.

In this paper, we prove that PermFunction € ZPP; it secems to be the
second natural decision problem in ZPP unknown to be in P, and the only
one under the ERH.

We start with an introduction to ezceptional functions in Section 2. We
prove a quantitative version of the well-known result that over a sufficiently
large finite field, permutation functions are essentially exceptional functions.
Since exceptional functions have polynomial-time verifiable certificates, it thus
follows that PermFunction € N'P.

In Section 3, we reduce PermFunction in deterministic polynomial time to
the problem of factoring bivariate polynomials over F,, which is in turn deter-
ministic polynomial-time reducible to the problem PolyFactor of factoring uni-
variate polynomials over F,. This yields a Yes-biased random polynomial-time
test for permutation functions (it can be made error-free running in expected
polynomial time), and thus proves that PermFunction is in R and hence in
ZPP. We also give a decision-problem version of PolyFactor; it is debatable
whether this is a “natural decision problem”.

We design a deterministic test for permutation functions in Section 4. The
deterministic test is based on Bombieri’s estimate on exponential sums along a
curve and uses O”(n%¢'/2) field operations for f € F,(z) of degree n < charF, if ¢
is sufficiently large, and it extends a previous deterministic test for permutation
polynomials in Shparlinski (1992b).

We return to probabilistically testing permutation functions in Section 5.
We dmelup a No-biased random polynomial-time test for PermFunction using
O (n?log? ) operations in IF;, which is about the square of the cost of the test
in Ma & von zur Gathen (1993). The appeal of the new test is its simplicity
of statement and ease of implémentation; the proof of its correctness, however,
relies on an application of Weil’s famous theorem on the number of points on
algebraic curves over finite fields.
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2. Certificates for permutation functions
A rational function [ = g/h € F;(z) is called separable if and only if 3f /dx # 0.
NOTATION 2.1. We use the following conventions throughout the paper.

f = g/h € F,(x) is separable with g,k € F,[z] and ged(g,h) =1,

n = deg [ = max{degg,degh} < ¢, and n > 1,

p =q— #{f(a): a € F,, h(a) # 0} is the number of non-images of [,
= [g(z) h(y) — g(y) h(x)]/(z — y) is the difference polynomial of f,

n* is the (total) degree of f,

K is an algebraic closure of F,,

C = {(a,b) € K% f*(a,b) = 0} is the plane curve defined by f*,

C* = {(a,b) € C:(a,b) € B?, a # b} = {(a,8) € B?: f(a) = f(b), a # b},

v = #C* is the number of rational points on C off the diagonal.

Let M: N — R be a “universal” cost of multiplication, so that the multiplica-
tion st takes O(M(n)) arithmetic operations or bit operations, respectively, for
two polynomials s, € F|[z] of degree at most n, or two n-bit integers s,t € Z.
Similarly, the division with remainder sremt (if ¢ # 0), and the ged computa-
tion ged(s, ) can be performed in O(M(n)), and O(M(n)log n) operations, re-
spectively (Aho et al. 1974, Section 7.5). We can choose M(n) = nlogn loglog n
with “fast arithmetic” (Schonhage & Strassen 1971, Cantor & Kaltofen 1991),
and M(n) = n? with “classical arithmetic”.

The following proposition shows that we can always preprocess the input
[ € F,(z) for PermFunction and make it separable.

PROPOSITION 2.2. For any f € K,(z), one can find a separable f € F,(z) in

O(n log qlog n) operations in I, so that f is a permutation function if and only
if f is.

PROOF. Let f = g/h € E(z) with gcd(g,h) = 1, and p = charF, be the
characteristic of I, Sinccgcd(g,fa) =1, wehave f' = 0 (and thus ¢’ h—g b’ = 0)
if and only if ¢ = &’ = 0, i.e., il and only if f € ]F (IP) with ¢ = ¥~ a;, 2 and
h = Tbipx™®. In that case, we can write f(z) = [f(z)]” with [ = g/h €
F,(x), gcd(q,h) = = Za‘“{p iand h = Zb“p x', computable via repeated
squaring in O(n/p - log(q/p)) multlphcatlons in F,.

Since a — a” is a bijection of F,, it follows that f is a permutation function
if and only if f is. In fact, they both have the same image size.
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Replacing f by [ and repeating this process until f' # (0, we obtain a
separable f = g/h € F,(z) with ged(g,h) = 1-such that f is a permutation
function if and only if f is. The total cost is O(n/p - log(q/p) - log, n) or
O(nlog nlog ¢) operations in F,. O

The following proposition gives a simple geometric characterization of per-
mutation functions.

PROPOSITION 2.3. Let f € F,(z) be total, and v as in Notation 2.1. Then f
is a permutation function if and only if v = 0.

While it seems in general hard to compute =, i.e., to count the rational
points of C off the diagonal, it is easy to count the rational points on the
diagonal.

PROPOSITION 2.4. Let f = g/h € Fy(z), f = ¢'h — gh' € Ky[z], n and C be
as in Notation 2.1, and A C F? be the diagonal. Then we have CN A =

{(a,a) € ]E:f:f(a) =0}, and #(C N A) = degged(z? — z, f) can be computed
with O(M(n)log(qn)) operations in F,.

Proofr. We recall from Notation 2.1 that

floy) = 9@VAW) —9() h(z)

-y
l9(z) — g(y)] h(y) = 9(y) [R(z) — A(y)]
r—y
o g(ﬂ;). :j(y) h(u) » g(y) h(x;z : ;L(y) )

Therefore, f*(z,z) = f = ¢'h — gh' € IF, [z], and hence
CNA={(a,a) e ]F;f:f‘(a,a) =0} = {(a,a) € E;Q:f'(a) = 0}

From Fermat’s little theorem [laer,(z — a) = 29 — z, we have #(CN A) =

deg ged(z? — z, f) Using repeated squaring and polynomial gcd computations,
we can thus count the rational points of C on the diagonal with O(M(n) log(gqn))
operations in ;. O

Combining Propositions 2.3 and 2.4, we obtain the following equivalent
characterization of permutation functions.
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COROLLARY 2.5. Let f = g/h € F,(z) be total, and C as in Notation 2.1. Then
f is a permutation function if and only if C has exactly deg ged(z?—z, g'h— gh')
rational points over F,.

LEMMA 2.6. Let f € F,(z) be total, and n,p,v as in Notation 2.1. Then
ng > 7.

PROOF. Fori € N, let R; = {a € F,:#f '({e}) = i} be the set of field
elements with exactly ¢ preimages under f, and r; = #R;. Clearly, B; = @ for
t > n, since for any @ € B, g — a h € F,[z] has at most n roots in F,. Since

U k=B ad U R=f(E)

0<i<n 1<i<n
are partitions of F, and f([,), respectively, we have
Yin=e=p, Y =g I E=Drisp (2.1)
1<i<n 1<i<n 2<i<n

Consider the mapping from C* onto Uz<i<n i given by (a,b) — f(a).
Clearly, cvery ¢ € R; has exactly i(i — 1) preimages under this mapping. It
thus follows from (2.1) that

np= Y nli-1r>2 Y ii—-1)r=n. o

2<i€n 2<i<n
PROPOSITION 2.7. Let f € K,(z), and n, [*,n* be as in Notation 2.1. Then
n—1<n"<2(n—1)andz—yt

PH.OOF. L’CL f = ‘I?/-'!-'r With g - EOSI‘S” a,‘:tf‘. and h = 205{5‘1 b"x‘. Wl‘LlI
ai, b; € F,. Then we can write

g(z) h(y) — g(y) h(x)

f*
L=
. Fict
- T T oy,
D<i<n 0<<n =y 0<i,5<n

with the symmetric Bézoutian matriz Z = (zij)o<ijen € Fy*™. Tt is well-known
that the resultant of g and h satisfies res(g, k) = (—1)"""V/2 det Z (see, e.g.,
Barnett 1983, Section 1.5).

Clearly, z,—1,; = zjn-1 7# 0 for some 0 < j < n — 1, since otherwise the
last row of Z would comprise all zeroes, resulting in det Z = res(g, k) = 0 and
hence ged(g, h) # 1, which is a contradiction, since f is separable. O
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REMARK 2.8. The difference polynomial f* can be computed with QO(n?®) op-
erations in F,, and the degree bounds on f* are tight. The lower bound n — 1
is achieved for f = (2" + a)/z" and the upper bound 2 (n — 1) is achieved for
f=(a"1+a)/z", for any a € F, \ {0}.

Since F, [, y] is a unique factorization domain, every non-constant polyno-
mial in [ [z,y] has a complete factorization into irreducible factors over F,.
An irreducible polynomial in F,[z,y] is absolutely irreducible if it is irreducible
over any algebraic extension of F,, or equivalently, irreducible over an algebraic
closure of F,.

Kaltofen (1985, 1987) shows that for polynomials in F, [z, y] of degree n, both
irreducibility over I, and absolute irreducibility can be tested deterministically
in polynomial time (seemingly, in O"(n®log ¢) operations in F, ).

DEFINITION 2.9. A non-constant rational function f € E,(x) is exceptional if

and only if its difference polynomial f* € F,|z, y] has no absolutely irreducible
factors over F,.

Tor example, any linear rational function (az + b)/(cz + d) € F,(x) with
ad — be # 0 is exceptional.

REMARK 2.10. Every exceptional function (or non-exceptional function) of de-
gree n can be certified in time polynomial in the input size n log ¢, via Kaltofen's
two deterministic irreducibility tests. This shows that exceptional functions are

in NP Neco-NP.

Perhaps the most important development in the contemporary study of per-
mutation functions is the fundamental result stating that exceptional functions
are essentially equivalent to permutation functions.

Special and weaker versions of the following facts for polynomials over E,
were proved by MacCluer (1967) and Williams (1968) for part (i), and by
Davenport & Lewis (1963), Bombicri & Davenport (1966) and Hayes (1967)
for part (ii). The general and stronger version for rational functions over F,

was established in its entirety by Cohen (1970) using deep methods in algebraic
number theory.

FacT 2.11. (Cohen) Let f € F,(z) be total and separable of degree n.
(i) If f is exceptional, then f is a permutation function.

(ii) There exists a function ¢, of n such that if ¢ > ¢, and [ is a permutation
function, then f is exceptional.
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Our aim in the remainder of this section is to find an explicit value for ¢,
and then demonstrate that every permutation function has a polynomial-time
verifiable certificate.

LEMMA 2.12. Let ¢ € F,[z,y] have degree m > 1, and suppose that = — y { ¢.
Let v = #{(a,b) € E’:¢(a,b) = 0,a # b}, and o be the number of non-

associate absolutely irreducible factors of ¢ over F,.
(1) If¢g > (m+1)" and o > 1, then v > 0.
(i) fO<e<landq2e*(m+1), theny > (0 —€)q.

PrOOF.  Without loss of generality, we assume that ¢ is squarefree, and
write @ = @1+ QePoqr - @r, with @; € F, [z, y] irreducible and pairwise non-
associated for 1 <4 < 7, and ; absolutely irreducible if and only if i < o. We
may further assume that ¢ > 1.

Let K be an algebraic closure of I, and for 1 < i < 7, let ¢; = {(a,b) €
K?*:¢i(a,b) = 0} be the curve defined by ¢;, X; =Cin F? its rational points,
and n; = deg ¢; > 1. By Bézout’s theorem, for 1 <i < j < r, we have

ning 2 #(CiNGCj) 2 #(X: N &), (2.2)

Furthermore, for 1 < ¢ < o, Weil’s bound (Fried & Jarden 1986, Theorem
4.9; Bach ) on the number of points on a plane curve over a finite field yields
that

#Xi 2 q+1— (ni—1)(ni - 2)¢"/* —n; > ¢ — nlg"/2 (2.3)

Since  — y does not divide ¢, ¢(z,z) € F,[z] is a non-zero polynomial of
degree at most m, and hence by (2.2) and (2.3)

y2# | Xi-m># |J Xi-m

1<i<r 1<i<o
> Z #HA; — z #(X:NA;) —m
1<i<o 1<:i<j<e (24)
qu—q”r? Z n?— Z nin; —m
1<i<0 1<i<j<a
> oq — m*¢"* —m® —m,

because ny + -+ +n, < m.
A simple calculation shows that if ¢ > (m + 1)* and ¢ > 1, then oq —
m?q'/? —m? —m > 0, and hence (i) follows from (2.4).
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To prove (ii), we use (2.4) and write

v = oqg—m*?—m?—m
= (6—€)g+eq—m* "’ —m?—m > (0 —¢)q,

since 0 < ¢ <1 and ¢ > e *(m+1)! imply that eq —m?¢"/2—m? —m > 0. O

THEOREM 2.13. Let f € F,(z) be total, and n,p, f* as in Notation 2.1, and
furthermore 0 < € < 1.

(i) If ¢ > 16n* and f is a permutation function, then f is exceptional.

(i) If ¢ > 16 ?n* and o is the number of non-associate absolutely irre-
ducible factors of f* over |, then p > (o — €) ¢/n.

(iii) If ¢ > 64n* and f is not a permutation function, then p > q/2n.

PROOF. We may assume that n > 2, since any total linear rational function
is a polynomial.

We recall 4, n" from Notation 2.1. Proposition 2.7 shows that n — 1 ol e
2(n—1) and  —y { f*. Using 16n* > (2n — 1)* > (n* + 1)%, Lemma 2.12 (i)
proves (i), since f is a permutation function if and only if v = 0.

Similarly, since 16¢?n* > ¢2(2n — 1)* > ¢ ?(n* + 1)*, (ii) follows from
Lemma 2.6 and Lemma 2.12 (ii).

(iii) follows from (ii) with ¢ = 1/2, using Fact 2.11 (i). O

Combining Fact 2.11 (i) with Theorem 2.13 (i), we have the following result.

COROLLARY 2.14. Let ¢ > 16n* and f = g/h € F,(z) be total and separable
of degree n. Then f is a permutation function if and only if f is exceptional.

If h =1, then f = g € F,[z] and the difference polynomial f* = (f(z) —
f(y)])/(z — y) has degree n* = n — 1, and hence Corollary 2.14 holds for ¢ > n*
(see also von zur Gathen 1991b). In this special case, Wan (1993) proves
a stronger version for Theorem 2.13 (iii): if f € F,[z] of degree n is not a
permutation polynomial, then the number p of non-images of f in F, satisfies
p 2 (qg—1)/n, for any n and q.

REMARK 2.15. Fermat'’s little theorem states that 27 — z = [liex,(z —a), and
hence f = g/h € F(z) is total if and only if ged(z? — ,h) = 1. This can be
verified with O(M(n)log(gn)) operations in F, via repeated squaring and the
Knuth-Schénhage ged algorithm for polynomials (Aho et al. 1974, Section 7.5)
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Corollary 2.14 implies that PermFunction € NP when ¢ > 16 n, since every
exceptional function can be certified deterministically in time polynomial in
nlogq. When q < 16n*, PermFunction € P C NP, since for each a € F,, we
can check il it has a unique preimage under f, i.e., if deg ged(29—=z,g—ah) = 1,
using the same method as mentioned above. The total cost of this deterministic
procedure is O(gM(n)log(qn)) or O(gM(n)log n) operations in F,.

For a permutation function f = g/h € F,(z) of degree n and a € F,,
f7'(a) can be calculated with O(M(n)log(gn)) operations in F,, using that
x —b=ged(z? —x,9 — ah) if and only if a = f(b).

3. Reduction to polynomial factorization

We have seen that every permutation function f € F,(z) of degree n has a
certificate that is deterministically verifiable in time polynomial in nlog¢. To
find such a certificate when ¢ is large, say, ¢ > 16n*, we need to factor the
difference polynomial f* € F,[z,y] of degree n* for n —1 < n* < 2(n —1), and
check that each irreducible factor of f* over E, is not absolutely irreducible.

Although no polynomial-time deterministic algorithm is known for the bi-
variate polynomial factoring problem over F,, there are some efficient prob-
abilistic algorithms in the literature. Chistov & Grigoryev (1982), Lenstra
(1985), and von zur Gathen & Kaltofen (1985) design polynomial-time “Las
Vegas” algorithms that either produce a correct complete factorization or re-
port failure.

The latter paper presents an algorithm for factoring polynomials in F, [z, y]
of degree n, which uses (nlog¢)®") operations in F, and fails with probabil-
ity at most 27", and also shows that factoring bivariate polynomials over F,
of degree n is deterministic polynomial-time reducible to factoring univariate
polynomials over T, of degree at most n. Shparlinski (1993) gives a deter-
ministic factoring algorithm using O(n®7 log ¢) field operations for almost all
bivariate polynomials over I, of degree n.

The following theorem is immediate from the above discussion.

THEOREM 3.1. PermFunction is deterministic polynomial-time reducible to the

problemn PolyFactor of factoring univariate polynomials over finite fields.

REMARK 3.2. Although PolyFactor is usually considered to be a search prob-
lem, it can be formulated as a decision problem; it is debatable whether this is
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a “natural decision problem”. Here we only state this for a prime field E,, but
the method can be easily generalized for any finite field.

Let F, = {f € E[z]:deg f < n} and Zyner = {0,1,...,p"! —1}. Then the
p-adic representation of numbers yields a natural bijection 7 between F,, and
Zpni1, given by

an—1

anx“ + ap—1T e O G 3 R “‘npn + an—lpn_l e oyp + ag.

For f,g € F,, we say f < g if and only if 7(f) < 7(g), and define the
decision problem

PolyFactor (f, g): Does f have a factor < g over E,?

Clearly, PolyFactor € ZPP. Furthermore, PolyFactor is self-reducible: using
PolyFactor as an oracle, we can completely factor a polynomial in E[z] via
binary search in deterministic polynomial time.

Assuming the ERH, Evdokimov (1993) shows that PolyFactor can be solved
deterministically in quasi-polynomial time, i.e., in (n'°¢"log ¢)°(V) field oper-
ations, for polynomials in F,[z] of degree n. We thus obtain the following
corollary.

COROLLARY 3.3. Under the ERII, one can decide deterministically whether

an arbitrary rational function in F,(z) of degree n is a permutation function in
time (n'°8™ log q)°1),

THEOREM 3.4. PermFunction is in R.

ProOF. Given f = g/h € F,(z) with degree n as in Notation 2.1, we have the
following probabilistic algorithm to test whether f is a permutation function.

1. Tf f is not total, then return No; otherwise, return Yes if fis a linear
polynomial.

2. If ¢ < 16n*, then return Yes if and only if every a € F, has a unique
preimage under f.

3. If ¢ > 16n", then construct the difference polynomial of f and call von
zur Gathen & Kaltofen’s algorithm BivariateFactor with the input f*.

4. If BivariateFactor reports failure, then return No; otherwise, let f* =
I [2--- fi be the produced complete factorization, where 1 < k < 2(n —
1) and f; € F[x,y] is irreducible over E, for 1 <1 < k.
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5. Check each f; for absolute irreducibility using Kaltofen’s deterministic
test. Return Yes if each f; is not absolutely irreducible, and No otherwise.

For the error analysis, we note that if f is not a permutation function, then
the test returns No. This follows from Corollary 2.14 when ¢ > 16n?, or the
fact that some a € F, does not have a unique preimage under f when ¢ < 16 n*.

If f is a permutation function, then the test gives a wrong answer No
only when BivariateFactor fails, which happens with probability at most ¢ =
o-dnsd” 1/2, since deg f* > n — 1 > 1. This shows that the test has a
Yes-biased error probability at most e.

As analyzed in Remark 2.15, Step 1 takes O"(nlog ¢) operations in F,; Step
2 takes place when ¢ < 16n*, using O"(n®) operations in F,.

Steps 3, 4 and 5 take place when ¢ > 16n*. Constructing f* uses O(n?)
operations in ;. Factoring f* by von zur Gathen & Kaltofen’s algorithm takes
O (n'®log” q) operations in . Testing each f; for absolute irreducibility by the
deterministic algorithm in Kaltofen (1985) seems to take O"(n® log q) operations
in F,.

The total cost of this test is clearly polynomial in the input size nlogq. O

Combining Theorem 3.4 with the co-R test for PermFunction in Ma &
von zur Gathen (1993), we have the following result.

COROLLARY 3.5. PermFunction is in ZPP.

We can design an error-free test for PermFunction running in expected poly-
nomial time as follows: one alternates the R and co-R tests repeatedly until
both tests report the same answer, which then must be the desired correct
answer. The expected cost will be dominated by the running time of the much
slower R test.

Alternatively, we can use the R test alone and reformulate it as follows: one
repeats calling von zur Gathen & Kaltofen’s BivariateFactor algorithm in Step
4 until a complete factorization of f* is produced, and then takes whatever
answer returned in Step 5. The resulting test will be error-free running in
expected polynomial time.

COROLLARY 3.6. For any rational function in () of degree n, one can decide
if it is a permutation function in expected time (n log q)°").
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4. A deterministic test

Let |, be a finite field with characteristic p. If p is small, e.g., p = n?0),
then it is well-known that any polynomial in F,[z| of degree n can be factored
in deterministic polynomial time. In that case, we obtain a polynomial-time
deterministic test for PermFunction by Theorem 3.1.

In this section, we develop a deterministic test in time sublincar in ¢ for
permutation functions of degree n < p il ¢ is sufficiently large, without resorting
to polynomial factorizations over E,.

The basic technique used in our design of this test is the so-called “strip
counting” method, which has been used in Shparlinski (1992b) for recognizing
permutation polynomials, and in von zur Gathen et al. (1993) for counting
points on a curve. It relies on the general principle that the behavior of an
algebraic curve in a wide enough strip reflects that of the entire curve.

If J € T (x) is total, then by Proposition 2.3, f is a permutation function
if and only if the curve C as in Notation 2.1 has no rational points off the
diagonal, i.e., if C* = @. Ilowever, if C* # (, then the strip counting method
implies that C has a rational point off the diagonal in some wide enough strip.

More formally, let

¢ (D)=C"n(D x F,) (4.1)

denote the set of rational points of C off the diagonal in the strip over D C T,
Clearly, C*(F,) = C*, but we arc interested in finding a D C EF, of size o(q), so
that C* = @ if and only if C*(D) = Q.

Suppose that p = charFf,, ¢ = p', and that

F, = E[z]/(w) = { > aiz' modw: a; € E;,}
0<i<t

is represented by some monic irreducible polynomial w € F, [z] of degree . For
any N € N with 2 < N < ¢, the following inequalities uniquely determine
k,h e Nwithl <k <land 2<h <p;

PP NSP, (h-1)p*' < N < hptt,

Now define a subset B C T, called the box of order N, as follows:

B:{ Eaimimodw:al,...,rzk_lE]F;,,Ogag.(h}. (4.2)

0<i<k
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Clearly, we have N < #B = hp*' < 2N, and F, is the box of order ¢.
Furthermore, let D = {a — b:a,b € B} denote the difference set of the box B.
It is evident that #B < #D < 2#4B.

LEMMA 4.1. Let p = charF,, ¢ € F, [z, y] be absolutely irreducible with degree
m, V = {(a,b) € F*:¢(a,b) = 0, a # b}, and assume that 0 < deg, ¢ < p and
z—yte Ifg>4(m+1)*, N €N with N > 2m?¢"/2 4+ 2m, and D is the
difference set of the box B of order N as in (4.2), then V(D) # 0.

PROOF. Let K be an algebraic closure of F,, C = {(a,b) € K% ¢(a,b) = 0}
the plane curve defined by ¢, X =Cn ]F;I2 its rational points, » = #X’, and
v = #A&(D) be the number of rational points of C in the strip over D. Since
z — y does not divide ¢, ¢(z,z) € F[z] is a non-zero polynomial of degree at
most ., and hence #V(D) > v —m.

Let s = #B, T:F, — E, be the absolute trace function from F, to E,,
and x(A) = exp(2riT(})/p) the canonical additive character on F,. Using the
well-known identity

1 Sane 1 ifa=0,
12070 itk =K \{0)

(see, e.g., Shparlinski 1992a, Theorem G, p. 5), and noting that for each d € D,
there are at most s different ways to write d = a — b with a,b € B, we have

s02t=" Y ¥ ¥ x(Ae-(a-b)). (4.3)

9 \EL, (2,y)€X abeB

Separating the terms corresponding to A = 0 and rearranging the sum in
(4.3), we get

t—rs?lq =

. 2 x(A2) > x(Mb—a)).

1
q a\Equ (wy)EX a,hER

Since 0 < deg, ¢ < p, Lemma 4 from Bombieri & Davenport (1966) says
that we can apply Bombieri’s (1966, Theorem 6) bound on exponential sums

along a curve:
> x(Ae)
(zy)ex -

< (m? —m)g"? + m?.

Since ¢ > m?, we have (m? — m)¢'/? + m? < m?¢'/?, and the following

bound
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|t —rs*/q| <m?q™? 3 LZ X(A(b— a))l <miiP Y LZ X(A(b— a))‘

AEE) n,bEB Ae¥y abeB
5
miq™ 3 IS0 X)X x(—Ab)| = g 3 3 (b

Acly 'beB beB A€R, 'benB
—mq”zzzxﬂ;z —Ab) = 2"1"22 > x(X(

Agky beB beB AET, a,hER
il mzq—uu Z 21 - mz /2,

el beB

This shows that ¢ > rs?/q — m?¢'/%s, and v > rs/q — m*q'/? by (4.3).
Applying Weil’s bound r > q — m2¢*/? (Fried & Jarden 1986, Theorem 4.9;
Bach ), we obtain v > (1 — mzq'uz] — m?g'/2,

Since ¢ > 4 (m+1)*, we have 1-m?¢~Y/2 > 1/2 and s > N > 2m? ¢/?+42m
implies that

#V(D)Zv—m>(1-m?¢ s —m??*—m>0. O

THEOREM 4.2. Let ¢ > 64n*, N € N with N > 8(n—1)? ¢"/*+4n, f € E (z)
be total, C* and n < charF, as in Notation 2.1, and D be the difference set of
the box of order N as in (4.2). Then f is a permutation function if and only if
C*(D) = 0.

Proor. If [ = g/h is a permutation function, then C* = @ by Proposition
2.3, and hence C*(DD) = @ by (4.1).

By Proposition 2.7, we have ¢ —y t f*, deg, f* < n — 1, and deg f* <
2(n—1). If [ is not a permutation function, then f is not exceptional by Fact
2.11 (i). Therefore, f* has an absolutely irreducible factor ¢ € F,[z,y] such
that z — y { ¢, deg, o <n—1 < charF,, and m = degp < 2(n — 1).

We claim that deg, ¢ > 0, since otherwise ¢ has the form ¢ = az+b € T, [z]
with a,b € F, and a # 0. For ¢ = —b/a € F,, this implies that

f (e,y) = g(e)h(y) — h(c)g(y) = 0;

this is impossible because ged(g, h) = 1.
Since ¢ 2 64n* >4(m+1)*and N > 8(n—1)2¢/2+4n > 2m2q¢'/? 4+ 2m,
Lemma 4.1 implies that V(D) # @, and hence C*(D) # @. O

A DETERMINISTIC TEST FOR PERMUTATION FUNCTIONS.
Input: f = g/h € F;(x) as in Notation 2.1 and n < char F,.

Answer: Yes or No.
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1. If f is not total, then return No; otherwise, return Yes if f is a linear
polynomial.

2. If ¢ < 64n", then return Yes if and only if every a € F, has a unique
preimage under [.

-

If ¢ > 64n%, then let D C F, be the difference set of the box of order
N=[8(n—1)2¢"*] +4n as in (1.2).

4. Return Yes if and only if for every d € D, we have

ged(2? — 2,9 — f(d)h) =z —d.

THEOREM 4.3. The algorithm tests deterministically if f € F,(z) of degree
n < char [y is a permutation function. It uses O(qM(n)log n) operations in T,
if ¢ < 64n*, and O(¢'/?n?M(n)log q) operations if ¢ > 64 n®.

PROOF. The correctness of the test follows from Theorem 4.2.

As analyzed in Remark 2.15, Step | takes O(M(n)log(¢n)) operations in
I;; Step 2 takes place when ¢ < 64n*, using O(¢M(n)log n) operations in F,.

Steps 3 and 4 take place when ¢ > 64n'. For each d € D, evaluating f
at d takes O(n) operations in F, and calculating ged(z? — ,g — f(d) h) uses
O(M(n)log q) operations.

The total cost is thus O(gM(n)log n) or O°(n®) operations in F, if ¢ < 64 n?,
and O(q"/*n*M(n)log q) or O"(n® ¢'/?) operations if ¢ > 64nt. O

5. A simple probabilistic test

In this section we design a new co-R test for permutation functions. Although
the technical details of this test differ from the previous test in Ma & von zur
Gathen (1993), both tests rely on the following principle: if f € F,(z) is
not a permutation function, then there are plenty of “witnesses” to this non-
bijectivity; using random choices, one can quickly find such a witness and thus
prove that [ is not a permutation function. What essentially distinguishes the
two tests, however, is their choice of witnesses.

The new test uses the following criterion for permutation functions: f is a
permutation function if and only if every element in F, has a unique preimage
under f. Therefore the witnesses to a non-permutation function f are those
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field elements that are either non-images of f, or that have multiple preimages
under f. By Theorem 2.13 (iii), if f has degree n and ¢ > 64n*, then the
number of such witnesses in [, is greater than ¢/2n. The probability that a
randomly chosen element in F, is a witness is thus greater than 1/2n.

In Ma & von zur Gathen (1993), a novel criterion for permutation functions
is designed, so that a significantly larger number of witnesses can testify the
non-bijectivity. More specifically, a ficld extension F;m D F, with m > 2 is used
in that test, and witnesses to a non-permutation function of degree n come from
a subset of Fpm with at least ¢™ — ¢ elements, for any n and ¢. Consequently,
the probability that a randomly chosen element in Fym is a witness is at least
1 —¢'"™ >1/2, and it is almost one when g or m is large enough.

A SIMPLE TEST FOR PERMUTATION FUNCTIONS.
Input: f = g/h € F(z) with n as in Notation 2.1, and € > 0.

Answer: Yes or No.

L. If f is not total, then return No; otherwise, return Yes if [ is a linear
polynomial.

2. If ¢ < 64n*, then return Yes if and only if every a € F, has a unique
preimage under f.

3. If ¢ > 64 n*, then repeat k = [2nIn ¢! times:

Randomly and uniformly choose a € F,, and compute u =
ged(z? — 2,9 —ah). If degu # 1, then stop and return No.

4. Return Yes.

THEOREM 5.1. If g < 64n*, the test is deterministic and uses O(qM(n)log n)
operations in ;. If ¢ > 64n*, the test is probabilistic with a No-biased error
probability at most ¢, so that if f is a permutation function, the answer is Yes; if
[ is not, the answer is No with probability at least 1 —e. The probabilistic test

is performed with k = [2nlne™"] random choices and O(nM(n)log qloge™!)
operations in .

PRrROOF. If fis a permutation function, then the test returns Yes, since every
element in [, has a unique preimage under f.

If f is not a permutation function, however, the test may give a wrong
answer Yes in Step 4, after having failed to find a single witness (to the non-
bijectivity) among the k randomly chosen field elements. By Theorem 2.13
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(1i1), this happens with probability at most

(=5 = (=) < pmse

As analyzed in Remark 2.15, Step 1 takes O(M(n)log(gn)) operations in
F;; Step 2 takes place when ¢ < 64n*, using O(gM(n)logn) operations in F,.
Step 3 takes place when ¢ > 64 n* and uses O(kM(n)log ¢) operations.

The total cost is thus O(gM(n) log ) or O7(n®) operations if ¢ < 64 n*, and
O(nM(n)log gloge™') or O"(n?log qlog e~!) operations if ¢ > 64nt. O

REMARK 5.2. This test extends the “naive” test for permutation polynomials
in von zur Gathen (1991b).

For the special case of polynomials, Wan (1993) shows that if f € F,[z]
has degree n and is not a permutation polynomial, then the number of non-
images of f in F, is al least (¢ — 1)/n, for any n and ¢. This implies that
the probability that a randomly chosen element in F, is a witness (to a non-
permutation polynomial) is at least (1 — 1/¢)/n > 1/2n, for any n and q.

In view of this result, we can remove Steps 1 and 2 and also the restriction
g > 64n* in Step 3 from the above test. The resulling test for permutation
polynomials then works probabilistically with a No-biased error probability at
most € and uses O°(n? log glog e™!) operations in E,, for any n and q.

6. Conclusion

We have demonstrated that PermFunction € ZPP, and reduced it in determin-
istic polynomial time to the problem PolyFactor of factoring univariate polyno-
mials over finite fields. Besides the problem Prime of recognizing prime num-
bers, it seems to be the only natural decision problem in ZPP unknown to be
in P.

For all of these three problems, the assumption of the ERII reduces the
known upper bounds on their complexity: Prime € P (Miller 1976), PolyFactor
1s solvable in deterministic quasi-polynomial time (Evdokimov 1993), and so is
PermFunction (Corollary 3.3).

In view of these developments, it would be interesting to know whether
under the ERH we can find a polynomial-time deterministic algorithm for
PermFunction (or even for PolyFactor).



94 Ma & von zur Gathen comput complexity 5 (1995)

It is expected that our method would also work for partial permutation
[unctions and bijective functions, namely, rational functions that need not be
total and are a permutation and injective, respectively, on their domains of
definition (Ma & von zur Gathen 1993). The central ingredient missing is

an analogue of Cohen’s theorem relating exceptional functions to permutation
functions.
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